Spaces:
Runtime error
Runtime error
File size: 8,426 Bytes
4a51346 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import logging
from math import log
from typing import Iterable, Sequence, Optional, Any, Dict, NamedTuple, Generator, Union, TYPE_CHECKING
from clickhouse_connect.driver.ctypes import data_conv
from clickhouse_connect.driver.context import BaseQueryContext
from clickhouse_connect.driver.options import np, pd
from clickhouse_connect.driver.exceptions import ProgrammingError
if TYPE_CHECKING:
from clickhouse_connect.datatypes.base import ClickHouseType
logger = logging.getLogger(__name__)
DEFAULT_BLOCK_BYTES = 1 << 24 # Try to generate blocks between 16 and 32MB in raw size
class InsertBlock(NamedTuple):
column_count: int
row_count: int
column_names: Iterable[str]
column_types: Iterable['ClickHouseType']
column_data: Iterable[Sequence[Any]]
# pylint: disable=too-many-instance-attributes
class InsertContext(BaseQueryContext):
"""
Reusable Argument/parameter object for inserts.
"""
# pylint: disable=too-many-arguments
def __init__(self,
table: str,
column_names: Sequence[str],
column_types: Sequence['ClickHouseType'],
data: Any = None,
column_oriented: Optional[bool] = None,
settings: Optional[Dict[str, Any]] = None,
compression: Optional[Union[str, bool]] = None,
query_formats: Optional[Dict[str, str]] = None,
column_formats: Optional[Dict[str, Union[str, Dict[str, str]]]] = None,
block_size: Optional[int] = None):
super().__init__(settings, query_formats, column_formats)
self.table = table
self.column_names = column_names
self.column_types = column_types
self.column_oriented = False if column_oriented is None else column_oriented
self.compression = compression
self.req_block_size = block_size
self.block_size = DEFAULT_BLOCK_BYTES
self.data = data
self.insert_exception = None
@property
def empty(self) -> bool:
return self._data is None
@property
def data(self):
return self._raw_data
@data.setter
def data(self, data: Any):
self._raw_data = data
self.current_block = 0
self.current_row = 0
self.row_count = 0
self.column_count = 0
self._data = None
if data is None or len(data) == 0:
return
if pd and isinstance(data, pd.DataFrame):
data = self._convert_pandas(data)
self.column_oriented = True
if np and isinstance(data, np.ndarray):
data = self._convert_numpy(data)
if self.column_oriented:
self._next_block_data = self._column_block_data
self._block_columns = data # [SliceView(column) for column in data]
self._block_rows = None
self.column_count = len(data)
self.row_count = len(data[0])
else:
self._next_block_data = self._row_block_data
self._block_rows = data
self._block_columns = None
self.row_count = len(data)
self.column_count = len(data[0])
if self.row_count and self.column_count:
if self.column_count != len(self.column_names):
raise ProgrammingError('Insert data column count does not match column names')
self._data = data
self.block_size = self._calc_block_size()
def _calc_block_size(self) -> int:
if self.req_block_size:
return self.req_block_size
row_size = 0
sample_size = min((log(self.row_count) + 1) * 2, 64)
sample_freq = max(1, int(self.row_count / sample_size))
for i, d_type in enumerate(self.column_types):
if d_type.byte_size:
row_size += d_type.byte_size
continue
if self.column_oriented:
col_data = self._data[i]
if sample_freq == 1:
d_size = d_type.data_size(col_data)
else:
sample = [col_data[j] for j in range(0, self.row_count, sample_freq)]
d_size = d_type.data_size(sample)
else:
data = self._data
sample = [data[j][i] for j in range(0, self.row_count, sample_freq)]
d_size = d_type.data_size(sample)
row_size += d_size
return 1 << (24 - int(log(row_size, 2)))
def next_block(self) -> Generator[InsertBlock, None, None]:
while True:
block_end = min(self.current_row + self.block_size, self.row_count)
row_count = block_end - self.current_row
if row_count <= 0:
return
self.current_block += 1
data = self._next_block_data(self.current_row, block_end)
yield InsertBlock(self.column_count, row_count, self.column_names, self.column_types, data)
self.current_row = block_end
def _column_block_data(self, block_start, block_end):
if block_start == 0 and self.row_count <= block_end:
return self._block_columns # Optimization if we don't need to break up the block
return [col[block_start: block_end] for col in self._block_columns]
def _row_block_data(self, block_start, block_end):
return data_conv.pivot(self._block_rows, block_start, block_end)
def _convert_pandas(self, df):
data = []
for df_col_name, col_name, ch_type in zip(df.columns, self.column_names, self.column_types):
df_col = df[df_col_name]
d_type = str(df_col.dtype)
if ch_type.python_type == int:
if 'float' in d_type:
df_col = df_col.round().astype(ch_type.base_type, copy=False)
else:
df_col = df_col.astype(ch_type.base_type, copy=False)
elif 'datetime' in ch_type.np_type and (pd.core.dtypes.common.is_datetime_or_timedelta_dtype(df_col)
or 'datetime64[ns' in d_type):
div = ch_type.nano_divisor
data.append([None if pd.isnull(x) else x.value // div for x in df_col])
self.column_formats[col_name] = 'int'
continue
if ch_type.nullable:
if d_type == 'object':
# This is ugly, but the multiple replaces seem required as a result of this bug:
# https://github.com/pandas-dev/pandas/issues/29024
df_col = df_col.replace({pd.NaT: None}).replace({np.nan: None})
elif 'Float' in ch_type.base_type:
# This seems to be the only way to convert any null looking things to nan
df_col = df_col.astype(ch_type.np_type)
else:
df_col = df_col.replace({np.nan: None})
data.append(df_col.to_numpy(copy=False))
return data
def _convert_numpy(self, np_array):
if np_array.dtype.names is None:
if 'date' in str(np_array.dtype):
for col_name, col_type in zip(self.column_names, self.column_types):
if 'date' in col_type.np_type:
self.column_formats[col_name] = 'int'
return np_array.astype('int').tolist()
for col_type in self.column_types:
if col_type.byte_size == 0 or col_type.byte_size > np_array.dtype.itemsize:
return np_array.tolist()
return np_array
if set(self.column_names).issubset(set(np_array.dtype.names)):
data = [np_array[col_name] for col_name in self.column_names]
else:
# Column names don't match, so we have to assume they are in order
data = [np_array[col_name] for col_name in np_array.dtype.names]
for ix, (col_name, col_type) in enumerate(zip(self.column_names, self.column_types)):
d_type = data[ix].dtype
if 'date' in str(d_type) and 'date' in col_type.np_type:
self.column_formats[col_name] = 'int'
data[ix] = data[ix].astype(int).tolist()
elif col_type.byte_size == 0 or col_type.byte_size > d_type.itemsize:
data[ix] = data[ix].tolist()
self.column_oriented = True
return data
|