Spaces:
Runtime error
Runtime error
File size: 12,845 Bytes
4a51346 4d48f2a 4a51346 4d48f2a 4a51346 159e834 4a51346 159e834 4a51346 159e834 4a51346 159e834 4a51346 e4cea54 4a51346 e4cea54 4a51346 e4cea54 4a51346 e4cea54 4a51346 e4cea54 4a51346 e4cea54 4a51346 e4cea54 4a51346 be2d30a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import configparser
# config = configparser.ConfigParser()
# config.read('./secrets.ini')
# openai_api_key = config['OPENAI']['OPENAI_API_KEY']
# serper_api_key = config['SERPER']['SERPER_API_KEY']
# serp_api_key = config['SERPAPI']['SERPAPI_API_KEY']
# os.environ.update({'OPENAI_API_KEY': openai_api_key})
# os.environ.update({'SERPER_API_KEY': serper_api_key})
# os.environ.update({'SERPAPI_API_KEY': serp_api_key})
from typing import List, Union
import re
import json
import pandas as pd
from langchain import SerpAPIWrapper, LLMChain
from langchain.agents import Tool, AgentType, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain, SimpleSequentialChain
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.document_loaders import DataFrameLoader, SeleniumURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.prompts import PromptTemplate, StringPromptTemplate, load_prompt, BaseChatPromptTemplate
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.schema import AgentAction, AgentFinish, HumanMessage
from langchain.vectorstores import DocArrayInMemorySearch, Chroma
stage_analyzer_inception_prompt = load_prompt("./templates/stage_analyzer_inception_prompt_template.json")
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0.0)
stage_analyzer_chain = LLMChain(
llm=llm,
prompt=stage_analyzer_inception_prompt,
verbose=False,
output_key="stage_number")
df = pd.read_json('./data/unified_wine_data.json', encoding='utf-8', lines=True)
loader =DataFrameLoader(data_frame=df, page_content_column='name')
docs = loader.load()
embeddings = OpenAIEmbeddings()
metadata_field_info = [
AttributeInfo(
name="body",
description="1-5 rating for the body of wine",
type="int",
),
AttributeInfo(
name="sweetness",
description="1-5 rating for the sweetness of wine",
type="int",
),
AttributeInfo(
name="alcohol",
description="1-5 rating for the alcohol of wine",
type="int",
),
AttributeInfo(
name="price",
description="The price of the wine",
type="int",
),
AttributeInfo(
name="rating",
description="1-5 rating for the wine",
type="float"
),
AttributeInfo(
name="wine_type",
description="The type of wine. It can be '๋ ๋', '๋ก์ ', '์คํํด๋ง', 'ํ์ดํธ', '๋์ ํธ', '์ฃผ์ ๊ฐํ'",
type="string"
),
AttributeInfo(
name="country",
description="The country of wine. It can be '๊ธฐํ ์ ๋๋ฅ', '๊ธฐํ๊ตฌ๋๋ฅ', '๋ด์ง๋๋', '๋
์ผ', '๋ฏธ๊ตญ', '์คํ์ธ', '์๋ฅดํจํฐ๋', '์ดํ๋ฆฌ์', '์น ๋ ', 'ํฌ๋ฃจํฌ์นผ', 'ํ๋์ค', 'ํธ์ฃผ'",
type="float"
),
]
vectorstore = Chroma.from_documents(docs, embeddings)
document_content_description = "Database of a wine"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=False
) # Added missing closing parenthesis
def search_with_url(query):
return SeleniumURLLoader(urls=[query]).load()
index = VectorstoreIndexCreator(
vectorstore_cls=DocArrayInMemorySearch
).from_loaders([loader])
search = SerpAPIWrapper()
tools = [
Tool(
name="Wine database",
func=retriever.get_relevant_documents,
description="""
Database about the wines in wine store. You can get information such as the price of the wine, purchase URL, features, rating information, and more.
You can search wines with the following attributes:
- body: 1-5 rating int for the body of wine. You have to specify greater than or less than. For example, if you want to search for wines with a body rating of less than 3, enter 'body: gt 0 lt 3'
- price: The price range of the wine. Please enter the price range in the form of range. For example, if you want to search for wines that cost less than 20,000 won, enter 'price: gt 0 lt20000'
- rating: 1-5 rating float for the wine. You have to specify greater than or less than. For example, if you want to search for wines with a rating of less than 3, enter 'rating: gt 0 lt 3'
- wine_type: The type of wine. It can be '๋ ๋', '๋ก์ ', '์คํํด๋ง', 'ํ์ดํธ', '๋์ ํธ', '์ฃผ์ ๊ฐํ'
- name: The name of wine. ์
๋ ฅํ ๋๋ '์์ธ ์ด๋ฆ์ "๋น๋ ์กฐ์" ์
๋๋ค' ์ด๋ฐ ์์ผ๋ก ์
๋ ฅํด์ฃผ์ธ์.
"""
),
Tool(
name = "Search specific wine with url",
func=search_with_url,
description="Search specific wine with url. Query must be url"
),
Tool(
name = "Wine database 2",
func=index.query,
description="Database about the wines in wine store. You can use this tool if you're having trouble getting information from the wine database tool above. Query must be in String"
),
Tool(
name = "Search",
func=search.run,
description="Useful for when you need to ask with search. Search in English only."
),
]
template = """
Your role is a chatbot that asks customers questions about wine and makes recommendations.
Never forget your name is "์ด์ฐ์ ".
Keep your responses in short length to retain the user's attention.
Only generate one response at a time! When you are done generating, end with '<END_OF_TURN>' to give the user a chance to respond.
Responses should be in Korean.
Complete the objective as best you can. You have access to the following tools:
{tools}
Use the following format:
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
์ด์ฐ์ : the final response to the user
You must respond according to the conversation stage within the triple backticks and conversation history within in '======'.
Current conversation stage:
```{conversation_stage}```
Conversation history:
=======
{conversation_history}
=======
Last user saying: {input}
{agent_scratchpad}
"""
conversation_stages_dict = {
"1": "Start: Start the conversation by introducing yourself. Be polite and respectful while maintaining a professional tone of conversation.",
"2": "Analyze: Identify the user's preferences in order to make wine recommendations. Ask questions to understand the preferences of your users in order to make wine recommendations. Ask only one question at a time. The wine database tool is not available here.",
"3": "Recommendation: Recommend the right wine based on the user's preferences identified. Recommendations must be limited to wines in wine database, and you can use tools to do this.",
"4": "After recommendation: After making a wine recommendation, it asks if the user likes the wine you recommended, and if they do, it provides a link to it. Otherwise, it takes you back to the recommendation stage.",
"5": "Close: When you're done, say goodbye to the user.",
"6": "Question and Answering: This is where you answer the user's questions. To answer user question, you can use the search tool or the wine database tool.",
"7": "Not in the given steps: This step is for when none of the steps between 1 and 6 apply.",
}
# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format(self, **kwargs) -> str:
stage_number = kwargs.pop("stage_number")
kwargs["conversation_stage"] = conversation_stages_dict[stage_number]
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
return self.template.format(**kwargs)
prompt = CustomPromptTemplate(
template=template,
tools=tools,
input_variables=["input", "intermediate_steps", "conversation_history", "stage_number"]
)
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "์ด์ฐ์ : " in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("์ด์ฐ์ : ")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
output_parser = CustomOutputParser()
llm_chain = LLMChain(llm=ChatOpenAI(model='gpt-4', temperature=0.0), prompt=prompt, verbose=False,)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=False)
import gradio as gr
# user_response, stage_history, conversation_history, pre_conversation_history = "", "", """""", """"""
with gr.Blocks(css='#chatbot .overflow-y-auto{height:750px}') as demo:
with gr.Row():
gr.HTML("""<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div>
<h1>ChatWine</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
LinkedIn <a href="https://www.linkedin.com/company/audrey-ai/about/">Audrey.ai</a>
</p>
</div>""")
chatbot = gr.Chatbot()
msg = gr.Textbox()
stage_history = gr.Textbox(visible=False)
submit_btn = gr.Button("์ ์ก")
clear_btn = gr.ClearButton([msg, chatbot])
def answer(user_response, chat_history, stage_history):
chat_history = chat_history or []
stage_history = stage_history or ""
pre_conversation_history = ""
for idx, chat in enumerate(chat_history):
pre_conversation_history += f"User: {chat[0]} <END_OF_TURN>\n"
pre_conversation_history += f"์ด์ฐ์ : {chat[1]} <END_OF_TURN>\n"
conversation_history = pre_conversation_history + f"User: {user_response} <END_OF_TURN>\n"
stage_number = stage_analyzer_chain.run({'conversation_history': conversation_history, 'stage_history': stage_history})
stage_number = stage_number[-1]
stage_history += stage_number if stage_history == "" else ", " + stage_number
response = agent_executor.run({'input':user_response, 'conversation_history': pre_conversation_history, 'stage_number': stage_number})
# conversation_history += "์ด์ฐ์ : " + response + "\n"
response = response.split('<END_OF_TURN>')[0]
chat_history.append((user_response, response))
return "", chat_history, stage_history
def user(user_message, history):
return gr.update(value="", interactive=False), history + [[user_message, None]]
# def clear(*args):
# global conversation_history, pre_conversation_history, stage_history, answer_token
# answer_token = ''
# conversation_history, pre_conversation_history, stage_history = """""", """""", ""
def clear():
pass
clear_btn.click(fn=clear)
submit_btn.click(answer, [msg, chatbot, stage_history], [msg, chatbot, stage_history])
msg.submit(answer, [msg, chatbot, stage_history], [msg, chatbot, stage_history])
demo.launch() |