Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create tokenizer.py
Browse files- eva_clip/tokenizer.py +198 -0
eva_clip/tokenizer.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP tokenizer
|
2 |
+
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
3 |
+
"""
|
4 |
+
import gzip
|
5 |
+
import html
|
6 |
+
import os
|
7 |
+
from functools import lru_cache
|
8 |
+
from typing import Union, List
|
9 |
+
|
10 |
+
import ftfy
|
11 |
+
import regex as re
|
12 |
+
import torch
|
13 |
+
|
14 |
+
# https://stackoverflow.com/q/62691279
|
15 |
+
import os
|
16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
17 |
+
|
18 |
+
|
19 |
+
@lru_cache()
|
20 |
+
def default_bpe():
|
21 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
22 |
+
|
23 |
+
|
24 |
+
@lru_cache()
|
25 |
+
def bytes_to_unicode():
|
26 |
+
"""
|
27 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
28 |
+
The reversible bpe codes work on unicode strings.
|
29 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
30 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
31 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
32 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
33 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
34 |
+
"""
|
35 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("隆"), ord("卢")+1))+list(range(ord("庐"), ord("每")+1))
|
36 |
+
cs = bs[:]
|
37 |
+
n = 0
|
38 |
+
for b in range(2**8):
|
39 |
+
if b not in bs:
|
40 |
+
bs.append(b)
|
41 |
+
cs.append(2**8+n)
|
42 |
+
n += 1
|
43 |
+
cs = [chr(n) for n in cs]
|
44 |
+
return dict(zip(bs, cs))
|
45 |
+
|
46 |
+
|
47 |
+
def get_pairs(word):
|
48 |
+
"""Return set of symbol pairs in a word.
|
49 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
50 |
+
"""
|
51 |
+
pairs = set()
|
52 |
+
prev_char = word[0]
|
53 |
+
for char in word[1:]:
|
54 |
+
pairs.add((prev_char, char))
|
55 |
+
prev_char = char
|
56 |
+
return pairs
|
57 |
+
|
58 |
+
|
59 |
+
def basic_clean(text):
|
60 |
+
text = ftfy.fix_text(text)
|
61 |
+
text = html.unescape(html.unescape(text))
|
62 |
+
return text.strip()
|
63 |
+
|
64 |
+
|
65 |
+
def whitespace_clean(text):
|
66 |
+
text = re.sub(r'\s+', ' ', text)
|
67 |
+
text = text.strip()
|
68 |
+
return text
|
69 |
+
|
70 |
+
|
71 |
+
class SimpleTokenizer(object):
|
72 |
+
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
73 |
+
self.byte_encoder = bytes_to_unicode()
|
74 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
75 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
76 |
+
merges = merges[1:49152-256-2+1]
|
77 |
+
merges = [tuple(merge.split()) for merge in merges]
|
78 |
+
vocab = list(bytes_to_unicode().values())
|
79 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
80 |
+
for merge in merges:
|
81 |
+
vocab.append(''.join(merge))
|
82 |
+
if not special_tokens:
|
83 |
+
special_tokens = ['<start_of_text>', '<end_of_text>']
|
84 |
+
else:
|
85 |
+
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
86 |
+
vocab.extend(special_tokens)
|
87 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
88 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
89 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
90 |
+
self.cache = {t:t for t in special_tokens}
|
91 |
+
special = "|".join(special_tokens)
|
92 |
+
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
93 |
+
|
94 |
+
self.vocab_size = len(self.encoder)
|
95 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
96 |
+
|
97 |
+
def bpe(self, token):
|
98 |
+
if token in self.cache:
|
99 |
+
return self.cache[token]
|
100 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
101 |
+
pairs = get_pairs(word)
|
102 |
+
|
103 |
+
if not pairs:
|
104 |
+
return token+'</w>'
|
105 |
+
|
106 |
+
while True:
|
107 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
108 |
+
if bigram not in self.bpe_ranks:
|
109 |
+
break
|
110 |
+
first, second = bigram
|
111 |
+
new_word = []
|
112 |
+
i = 0
|
113 |
+
while i < len(word):
|
114 |
+
try:
|
115 |
+
j = word.index(first, i)
|
116 |
+
new_word.extend(word[i:j])
|
117 |
+
i = j
|
118 |
+
except:
|
119 |
+
new_word.extend(word[i:])
|
120 |
+
break
|
121 |
+
|
122 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
123 |
+
new_word.append(first+second)
|
124 |
+
i += 2
|
125 |
+
else:
|
126 |
+
new_word.append(word[i])
|
127 |
+
i += 1
|
128 |
+
new_word = tuple(new_word)
|
129 |
+
word = new_word
|
130 |
+
if len(word) == 1:
|
131 |
+
break
|
132 |
+
else:
|
133 |
+
pairs = get_pairs(word)
|
134 |
+
word = ' '.join(word)
|
135 |
+
self.cache[token] = word
|
136 |
+
return word
|
137 |
+
|
138 |
+
def encode(self, text):
|
139 |
+
bpe_tokens = []
|
140 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
141 |
+
for token in re.findall(self.pat, text):
|
142 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
143 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
144 |
+
return bpe_tokens
|
145 |
+
|
146 |
+
def decode(self, tokens):
|
147 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
148 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
149 |
+
return text
|
150 |
+
|
151 |
+
|
152 |
+
_tokenizer = SimpleTokenizer()
|
153 |
+
|
154 |
+
|
155 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
156 |
+
"""
|
157 |
+
Returns the tokenized representation of given input string(s)
|
158 |
+
Parameters
|
159 |
+
----------
|
160 |
+
texts : Union[str, List[str]]
|
161 |
+
An input string or a list of input strings to tokenize
|
162 |
+
context_length : int
|
163 |
+
The context length to use; all CLIP models use 77 as the context length
|
164 |
+
Returns
|
165 |
+
-------
|
166 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
167 |
+
"""
|
168 |
+
if isinstance(texts, str):
|
169 |
+
texts = [texts]
|
170 |
+
|
171 |
+
sot_token = _tokenizer.encoder["<start_of_text>"]
|
172 |
+
eot_token = _tokenizer.encoder["<end_of_text>"]
|
173 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
174 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
175 |
+
|
176 |
+
for i, tokens in enumerate(all_tokens):
|
177 |
+
if len(tokens) > context_length:
|
178 |
+
tokens = tokens[:context_length] # Truncate
|
179 |
+
tokens[-1] = eot_token
|
180 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
181 |
+
|
182 |
+
return result
|
183 |
+
|
184 |
+
|
185 |
+
class HFTokenizer:
|
186 |
+
"HuggingFace tokenizer wrapper"
|
187 |
+
def __init__(self, tokenizer_name:str):
|
188 |
+
from transformers import AutoTokenizer
|
189 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
190 |
+
|
191 |
+
def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
|
192 |
+
# same cleaning as for default tokenizer, except lowercasing
|
193 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
194 |
+
if isinstance(texts, str):
|
195 |
+
texts = [texts]
|
196 |
+
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
197 |
+
input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
|
198 |
+
return input_ids
|