SunderAli17 commited on
Commit
6a86c90
1 Parent(s): 3edb05e

Delete eva_clip/flux/modules/layers.py

Browse files
Files changed (1) hide show
  1. eva_clip/flux/modules/layers.py +0 -253
eva_clip/flux/modules/layers.py DELETED
@@ -1,253 +0,0 @@
1
- import math
2
- from dataclasses import dataclass
3
-
4
- import torch
5
- from einops import rearrange
6
- from torch import Tensor, nn
7
-
8
- from flux.math import attention, rope
9
-
10
-
11
- class EmbedND(nn.Module):
12
- def __init__(self, dim: int, theta: int, axes_dim: list[int]):
13
- super().__init__()
14
- self.dim = dim
15
- self.theta = theta
16
- self.axes_dim = axes_dim
17
-
18
- def forward(self, ids: Tensor) -> Tensor:
19
- n_axes = ids.shape[-1]
20
- emb = torch.cat(
21
- [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
22
- dim=-3,
23
- )
24
-
25
- return emb.unsqueeze(1)
26
-
27
-
28
- def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
29
- """
30
- Create sinusoidal timestep embeddings.
31
- :param t: a 1-D Tensor of N indices, one per batch element.
32
- These may be fractional.
33
- :param dim: the dimension of the output.
34
- :param max_period: controls the minimum frequency of the embeddings.
35
- :return: an (N, D) Tensor of positional embeddings.
36
- """
37
- t = time_factor * t
38
- half = dim // 2
39
- freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
40
- t.device
41
- )
42
-
43
- args = t[:, None].float() * freqs[None]
44
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
45
- if dim % 2:
46
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
47
- if torch.is_floating_point(t):
48
- embedding = embedding.to(t)
49
- return embedding
50
-
51
-
52
- class MLPEmbedder(nn.Module):
53
- def __init__(self, in_dim: int, hidden_dim: int):
54
- super().__init__()
55
- self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
56
- self.silu = nn.SiLU()
57
- self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
58
-
59
- def forward(self, x: Tensor) -> Tensor:
60
- return self.out_layer(self.silu(self.in_layer(x)))
61
-
62
-
63
- class RMSNorm(torch.nn.Module):
64
- def __init__(self, dim: int):
65
- super().__init__()
66
- self.scale = nn.Parameter(torch.ones(dim))
67
-
68
- def forward(self, x: Tensor):
69
- x_dtype = x.dtype
70
- x = x.float()
71
- rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
72
- return (x * rrms).to(dtype=x_dtype) * self.scale
73
-
74
-
75
- class QKNorm(torch.nn.Module):
76
- def __init__(self, dim: int):
77
- super().__init__()
78
- self.query_norm = RMSNorm(dim)
79
- self.key_norm = RMSNorm(dim)
80
-
81
- def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
82
- q = self.query_norm(q)
83
- k = self.key_norm(k)
84
- return q.to(v), k.to(v)
85
-
86
-
87
- class SelfAttention(nn.Module):
88
- def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
89
- super().__init__()
90
- self.num_heads = num_heads
91
- head_dim = dim // num_heads
92
-
93
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
94
- self.norm = QKNorm(head_dim)
95
- self.proj = nn.Linear(dim, dim)
96
-
97
- def forward(self, x: Tensor, pe: Tensor) -> Tensor:
98
- qkv = self.qkv(x)
99
- q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
100
- q, k = self.norm(q, k, v)
101
- x = attention(q, k, v, pe=pe)
102
- x = self.proj(x)
103
- return x
104
-
105
-
106
- @dataclass
107
- class ModulationOut:
108
- shift: Tensor
109
- scale: Tensor
110
- gate: Tensor
111
-
112
-
113
- class Modulation(nn.Module):
114
- def __init__(self, dim: int, double: bool):
115
- super().__init__()
116
- self.is_double = double
117
- self.multiplier = 6 if double else 3
118
- self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
119
-
120
- def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut]:
121
- out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
122
-
123
- return (
124
- ModulationOut(*out[:3]),
125
- ModulationOut(*out[3:]) if self.is_double else None,
126
- )
127
-
128
-
129
- class DoubleStreamBlock(nn.Module):
130
- def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
131
- super().__init__()
132
-
133
- mlp_hidden_dim = int(hidden_size * mlp_ratio)
134
- self.num_heads = num_heads
135
- self.hidden_size = hidden_size
136
- self.img_mod = Modulation(hidden_size, double=True)
137
- self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
138
- self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
139
-
140
- self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
141
- self.img_mlp = nn.Sequential(
142
- nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
143
- nn.GELU(approximate="tanh"),
144
- nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
145
- )
146
-
147
- self.txt_mod = Modulation(hidden_size, double=True)
148
- self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
149
- self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
150
-
151
- self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
152
- self.txt_mlp = nn.Sequential(
153
- nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
154
- nn.GELU(approximate="tanh"),
155
- nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
156
- )
157
-
158
- def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
159
- img_mod1, img_mod2 = self.img_mod(vec)
160
- txt_mod1, txt_mod2 = self.txt_mod(vec)
161
-
162
- # prepare image for attention
163
- img_modulated = self.img_norm1(img)
164
- img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
165
- img_qkv = self.img_attn.qkv(img_modulated)
166
- img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
167
- img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
168
-
169
- # prepare txt for attention
170
- txt_modulated = self.txt_norm1(txt)
171
- txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
172
- txt_qkv = self.txt_attn.qkv(txt_modulated)
173
- txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
174
- txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
175
-
176
- # run actual attention
177
- q = torch.cat((txt_q, img_q), dim=2)
178
- k = torch.cat((txt_k, img_k), dim=2)
179
- v = torch.cat((txt_v, img_v), dim=2)
180
-
181
- attn = attention(q, k, v, pe=pe)
182
- txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
183
-
184
- # calculate the img bloks
185
- img = img + img_mod1.gate * self.img_attn.proj(img_attn)
186
- img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
187
-
188
- # calculate the txt bloks
189
- txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
190
- txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
191
- return img, txt
192
-
193
-
194
- class SingleStreamBlock(nn.Module):
195
- """
196
- A DiT block with parallel linear layers as described in
197
- https://arxiv.org/abs/2302.05442 and adapted modulation interface.
198
- """
199
-
200
- def __init__(
201
- self,
202
- hidden_size: int,
203
- num_heads: int,
204
- mlp_ratio: float = 4.0,
205
- qk_scale: float = None,
206
- ):
207
- super().__init__()
208
- self.hidden_dim = hidden_size
209
- self.num_heads = num_heads
210
- head_dim = hidden_size // num_heads
211
- self.scale = qk_scale or head_dim**-0.5
212
-
213
- self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
214
- # qkv and mlp_in
215
- self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
216
- # proj and mlp_out
217
- self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
218
-
219
- self.norm = QKNorm(head_dim)
220
-
221
- self.hidden_size = hidden_size
222
- self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
223
-
224
- self.mlp_act = nn.GELU(approximate="tanh")
225
- self.modulation = Modulation(hidden_size, double=False)
226
-
227
- def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
228
- mod, _ = self.modulation(vec)
229
- x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
230
- qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
231
-
232
- q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
233
- q, k = self.norm(q, k, v)
234
-
235
- # compute attention
236
- attn = attention(q, k, v, pe=pe)
237
- # compute activation in mlp stream, cat again and run second linear layer
238
- output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
239
- return x + mod.gate * output
240
-
241
-
242
- class LastLayer(nn.Module):
243
- def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
244
- super().__init__()
245
- self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
246
- self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
247
- self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
248
-
249
- def forward(self, x: Tensor, vec: Tensor) -> Tensor:
250
- shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
251
- x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
252
- x = self.linear(x)
253
- return x