Spaces:
Running
Running
File size: 12,530 Bytes
1eb5783 7d19cfc af11e83 1eb5783 6ff89e0 7d19cfc 1eb5783 af11e83 1eb5783 59d3a91 cfb1a62 59d3a91 7d19cfc af11e83 59d3a91 af11e83 59d3a91 669d93a 183168e 85bbaed 7d19cfc 85bbaed 7d19cfc 85bbaed 7d19cfc 85bbaed 7d19cfc 85bbaed 7d19cfc 85bbaed af11e83 85bbaed af11e83 85bbaed 7d19cfc 669d93a 1eb5783 af11e83 669d93a af11e83 669d93a af11e83 1eb5783 af11e83 669d93a daee42b 1eb5783 85bbaed 1eb5783 52a64e1 669d93a af11e83 1eb5783 c6040d0 d377a8f daee42b 1eb5783 af11e83 1eb5783 af11e83 daee42b 1eb5783 daee42b 52a64e1 7d19cfc 1eb5783 52a64e1 85bbaed af11e83 85bbaed 52a64e1 1eb5783 52a64e1 1eb5783 52a64e1 1eb5783 daee42b 1eb5783 85bbaed 1eb5783 85bbaed 1eb5783 af11e83 1eb5783 af11e83 1eb5783 af11e83 660cea6 af11e83 1eb5783 85bbaed 1eb5783 660cea6 1eb5783 85bbaed 1eb5783 85bbaed 1eb5783 85bbaed 1eb5783 85bbaed 1eb5783 85bbaed 1eb5783 85bbaed 1eb5783 85bbaed 1eb5783 52a64e1 daee42b 1eb5783 d762ede |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import json
from typing import List, Tuple
import os
import logging
import gradio as gr
from dotenv import load_dotenv
from slugify import slugify
from rag.rag_pipeline import RAGPipeline
from utils.helpers import generate_follow_up_questions, append_to_study_files, add_study_files_to_chromadb, chromadb_client
from utils.prompts import (
highlight_prompt,
evidence_based_prompt,
sample_questions,
)
import openai
from config import STUDY_FILES, OPENAI_API_KEY
from utils.zotero_manager import ZoteroManager
load_dotenv()
logging.basicConfig(level=logging.INFO)
openai.api_key = OPENAI_API_KEY
# After loop, add all collected data to ChromaDB
add_study_files_to_chromadb("study_files.json", "study_files_collection")
# Cache for RAG pipelines
rag_cache = {}
def process_zotero_library_items(zotero_library_id: str, zotero_api_access_key: str) -> str:
if not zotero_library_id or not zotero_api_access_key:
return "Please enter your zotero library Id and API Access Key"
zotero_library_id = zotero_library_id
zotero_library_type = "user" # or "group"
zotero_api_access_key = zotero_api_access_key
message = ""
try:
zotero_manager = ZoteroManager(
zotero_library_id, zotero_library_type, zotero_api_access_key
)
zotero_collections = zotero_manager.get_collections()
zotero_collection_lists = zotero_manager.list_zotero_collections(zotero_collections)
filtered_zotero_collection_lists = (
zotero_manager.filter_and_return_collections_with_items(zotero_collection_lists)
)
study_files_data = {} # Dictionary to collect items for ChromaDB
for collection in filtered_zotero_collection_lists:
collection_name = collection.get("name")
if collection_name not in STUDY_FILES:
collection_key = collection.get("key")
collection_items = zotero_manager.get_collection_items(collection_key)
zotero_collection_items = (
zotero_manager.get_collection_zotero_items_by_key(collection_key)
)
#### Export zotero collection items to json ####
zotero_items_json = zotero_manager.zotero_items_to_json(zotero_collection_items)
export_file = f"{slugify(collection_name)}_zotero_items.json"
zotero_manager.write_zotero_items_to_json_file(
zotero_items_json, f"data/{export_file}"
)
append_to_study_files("study_files.json", collection_name, f"data/{export_file}")
# Collect for ChromaDB
study_files_data[collection_name] = f"data/{export_file}"
# Update in-memory STUDY_FILES for reference in current session
STUDY_FILES.update({collection_name: f"data/{export_file}"})
logging.info(f"STUDY_FILES: {STUDY_FILES}")
# After loop, add all collected data to ChromaDB
add_study_files_to_chromadb("study_files.json", "study_files_collection")
message = "Successfully processed items in your zotero library"
except Exception as e:
message = f"Error process your zotero library: {str(e)}"
return message
def get_rag_pipeline(study_name: str) -> RAGPipeline:
"""Get or create a RAGPipeline instance for the given study by querying ChromaDB."""
if study_name not in rag_cache:
# Query ChromaDB for the study file path by ID
collection = chromadb_client.get_or_create_collection("study_files_collection")
result = collection.get(ids=[study_name]) # Retrieve document by ID
# Check if the result contains the requested document
if not result or len(result['metadatas']) == 0:
raise ValueError(f"Invalid study name: {study_name}")
# Extract the file path from the document metadata
study_file = result['metadatas'][0].get("file_path")
if not study_file:
raise ValueError(f"File path not found for study name: {study_name}")
# Create and cache the RAGPipeline instance
rag_cache[study_name] = RAGPipeline(study_file)
return rag_cache[study_name]
def chat_function(
message: str, study_name: str, prompt_type: str
) -> str:
"""Process a chat message and generate a response using the RAG pipeline."""
if not message.strip():
return "Please enter a valid query."
rag = get_rag_pipeline(study_name)
logging.info(f"rag: ==> {rag}")
prompt = {
"Highlight": highlight_prompt,
"Evidence-based": evidence_based_prompt,
}.get(prompt_type)
response = rag.query(message, prompt_template=prompt)
return response.response
def get_study_info(study_name: str) -> str:
"""Retrieve information about the specified study."""
collection = chromadb_client.get_or_create_collection("study_files_collection")
result = collection.get(ids=[study_name]) # Query by study name (as a list)
logging.info(f"Result: ======> {result}")
# Check if the document exists in the result
if not result or len(result['metadatas']) == 0:
raise ValueError(f"Invalid study name: {study_name}")
# Extract the file path from the document metadata
study_file = result['metadatas'][0].get("file_path")
logging.info(f"study_file: =======> {study_file}")
if not study_file:
raise ValueError(f"File path not found for study name: {study_name}")
with open(study_file, "r") as f:
data = json.load(f)
return f"### Number of documents: {len(data)}"
def update_interface(study_name: str) -> Tuple[str, gr.update, gr.update, gr.update]:
"""Update the interface based on the selected study."""
study_info = get_study_info(study_name)
questions = sample_questions.get(study_name, [])[:3]
if not questions:
questions = sample_questions.get("General", [])[:3]
visible_questions = [gr.update(visible=True, value=q) for q in questions]
hidden_questions = [gr.update(visible=False) for _ in range(3 - len(questions))]
return (study_info, *visible_questions, *hidden_questions)
def set_question(question: str) -> str:
return question.lstrip("✨ ")
def process_multi_input(text, study_name, prompt_type):
# Split input based on commas and strip any extra spaces
variable_list = [word.strip().upper() for word in text.split(',')]
user_message =f"Extract and present in a tabular format the following variables for each {study_name} study: {', '.join(variable_list)}"
logging.info(f"User message: ==> {user_message}")
response = chat_function(user_message, study_name, prompt_type)
return response
def create_gr_interface() -> gr.Blocks:
"""
Create and configure the Gradio interface for the RAG platform.
This function sets up the entire user interface, including:
- Chat interface with message input and display
- Study selection dropdown
- Sample and follow-up question buttons
- Prompt type selection
- Event handlers for user interactions
Returns:
gr.Blocks: The configured Gradio interface ready for launching.
"""
with gr.Blocks() as demo:
gr.Markdown("# ACRES RAG Platform")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Zotero Credentials")
zotero_library_id = gr.Textbox(label="Zotero Library ID", type="password", placeholder="Enter Your Zotero Library ID here...")
zotero_api_access_key = gr.Textbox(label="Zotero API Access Key", type="password", placeholder="Enter Your Zotero API Access Key...")
process_zotero_btn = gr.Button("Process your Zotero Library")
zotero_output = gr.Markdown(label="Zotero")
gr.Markdown("### Study Information")
# Query ChromaDB for all document IDs in the "study_files_collection" collection
collection = chromadb_client.get_or_create_collection("study_files_collection")
# Retrieve all documents by querying with an empty string and specifying a high n_results
all_documents = collection.query(query_texts=[""], n_results=1000)
logging.info(f"all_documents: =========> {all_documents}")
# Extract document IDs as study names
document_ids = all_documents.get("ids")
study_choices = [doc_id for doc_id in document_ids[0] if document_ids] # Get list of document IDs
logging.info(f"study_choices: ======> {study_choices}")
# Update the Dropdown with choices from ChromaDB
study_dropdown = gr.Dropdown(
choices=study_choices,
label="Select Study",
value=study_choices[0] if study_choices else None, # Set first choice as default, if available
)
study_info = gr.Markdown(label="Study Details")
gr.Markdown("### Settings")
prompt_type = gr.Radio(
["Default", "Highlight", "Evidence-based"],
label="Prompt Type",
value="Default",
)
# clear = gr.Button("Clear Chat")
with gr.Column(scale=3):
gr.Markdown("### Study Variables")
with gr.Row():
study_variables = gr.Textbox(
show_label=False,
placeholder="Type your variables separated by commas e.g (Study ID, Study Title, Authors etc)",
scale=4,
lines=1,
autofocus=True,
)
submit_btn = gr.Button("Submit", scale=1)
answer_output = gr.Markdown(label="Answer")
def user(
user_message: str, history: List[List[str]]
) -> Tuple[str, List[List[str]]]:
return "", (
history + [[user_message, None]] if user_message.strip() else history
)
def bot(
history: List[List[str]], study_name: str, prompt_type: str
) -> List[List[str]]:
"""
Generate bot response and update the interface.
This function:
1. Processes the latest user message
2. Generates a response using the RAG pipeline
3. Updates the chat history
4. Generates follow-up questions
5. Prepares interface updates for follow-up buttons
Args:
history (List[List[str]]): The current chat history.
study_name (str): The name of the current study.
prompt_type (str): The type of prompt being used.
Returns:
Tuple[List[List[str]], gr.update, gr.update, gr.update]:
Updated chat history and interface components for follow-up questions.
"""
if not history:
return history, [], [], []
user_message = history[-1][0]
bot_message = chat_function(user_message, history, study_name, prompt_type)
history[-1][1] = bot_message
return history
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
# bot,
# [chatbot, study_dropdown, prompt_type],
# [chatbot, *follow_up_btns],
# )
# send_btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
# bot,
# [chatbot, study_dropdown, prompt_type],
# [chatbot, *follow_up_btns],
# )
# for btn in follow_up_btns + sample_btns:
# btn.click(set_question, inputs=[btn], outputs=[msg])
# clear.click(lambda: None, None, chatbot, queue=False)
study_dropdown.change(
fn=get_study_info,
inputs=study_dropdown,
outputs=[study_info],
)
process_zotero_btn.click(process_zotero_library_items, inputs=[zotero_library_id, zotero_api_access_key], outputs=[zotero_output], queue=False)
submit_btn.click(process_multi_input, inputs=[study_variables, study_dropdown, prompt_type], outputs=[answer_output], queue=False)
return demo
demo = create_gr_interface()
if __name__ == "__main__":
# demo = create_gr_interface()
demo.launch(share=True, debug=True)
|