Fire-Detection / app.py
Suhani-2407's picture
Create app.py
df81665 verified
raw
history blame contribute delete
827 Bytes
from flask import Flask, request, jsonify
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
app = Flask(__name__)
model = tf.keras.models.load_model("MobileNet_Fire.h5")
class_labels = {0: "Fake", 1: "Low", 2: "Medium", 3: "High"} # Update as per your training
@app.route("/predict", methods=["POST"])
def predict():
file = request.files["file"]
img = image.load_img(file, target_size=(128, 128))
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
predictions = model.predict(img_array)
predicted_class = class_labels[np.argmax(predictions)]
confidence = float(np.max(predictions))
return jsonify({"prediction": predicted_class, "confidence": confidence})
if __name__ == "__main__":
app.run(debug=True)