Spaces:
Running
on
Zero
Running
on
Zero
Suchinthana
commited on
Commit
·
42897ae
1
Parent(s):
0c2f440
removing selenium
Browse files- app.py +19 -36
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import cv2
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
-
from PIL import Image
|
7 |
-
import io
|
8 |
import gradio as gr
|
9 |
from openai import OpenAI
|
10 |
from geopy.geocoders import Nominatim
|
11 |
-
from
|
12 |
-
from gradio_folium import Folium
|
13 |
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
14 |
import spaces
|
15 |
|
@@ -67,7 +64,7 @@ Ensure all responses are descriptive and relevant to city names only, without co
|
|
67 |
"content": [
|
68 |
{
|
69 |
"type": "text",
|
70 |
-
"text":
|
71 |
}
|
72 |
]
|
73 |
}
|
@@ -109,38 +106,25 @@ def generate_geojson(response):
|
|
109 |
}]
|
110 |
}
|
111 |
|
112 |
-
#
|
113 |
@spaces.GPU
|
114 |
-
def
|
115 |
-
|
116 |
-
for feature in
|
117 |
geom_type = feature["geometry"]["type"]
|
118 |
coords = feature["geometry"]["coordinates"]
|
|
|
119 |
if geom_type == "Point":
|
120 |
-
|
121 |
elif geom_type in ["MultiPoint", "LineString"]:
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
coordinates.extend(part)
|
126 |
-
elif geom_type == "MultiPolygon":
|
127 |
for polygon in coords:
|
128 |
-
for
|
129 |
-
coordinates.extend(part)
|
130 |
-
lats = [coord[1] for coord in coordinates]
|
131 |
-
lngs = [coord[0] for coord in coordinates]
|
132 |
-
return [[min(lats), min(lngs)], [max(lats), max(lngs)]]
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
def generate_map_image(geojson_data):
|
137 |
-
m = Map()
|
138 |
-
geo_layer = GeoJson(geojson_data, name="Feature map")
|
139 |
-
geo_layer.add_to(m)
|
140 |
-
bounds = get_bounds(geojson_data)
|
141 |
-
m.fit_bounds(bounds)
|
142 |
-
img_data = m._to_png(5)
|
143 |
-
return Image.open(io.BytesIO(img_data))
|
144 |
|
145 |
# ControlNet pipeline setup
|
146 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
|
@@ -175,13 +159,12 @@ def handle_query(query):
|
|
175 |
geojson_data = generate_geojson(response)
|
176 |
|
177 |
# Generate map image
|
178 |
-
map_image =
|
179 |
|
180 |
# Generate mask for ControlNet
|
181 |
-
empty_map =
|
182 |
-
|
183 |
-
|
184 |
-
_, mask = cv2.threshold(difference, 15, 255, cv2.THRESH_BINARY)
|
185 |
|
186 |
# Convert mask to PIL Image
|
187 |
mask_image = Image.fromarray(mask)
|
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
from PIL import Image, ImageDraw
|
|
|
6 |
import gradio as gr
|
7 |
from openai import OpenAI
|
8 |
from geopy.geocoders import Nominatim
|
9 |
+
from staticmap import StaticMap, CircleMarker, Polygon
|
|
|
10 |
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
11 |
import spaces
|
12 |
|
|
|
64 |
"content": [
|
65 |
{
|
66 |
"type": "text",
|
67 |
+
"text": "draw a map in coconut triangle of sri lanka: The Coconut Triangle is a region in Sri Lanka that's known for its coconut production. It's made up of the districts of Kurunegala, Puttalam, and Gampaha."
|
68 |
}
|
69 |
]
|
70 |
}
|
|
|
106 |
}]
|
107 |
}
|
108 |
|
109 |
+
# Generate static map image
|
110 |
@spaces.GPU
|
111 |
+
def generate_static_map(geojson_data):
|
112 |
+
m = StaticMap(500, 500)
|
113 |
+
for feature in geojson_data["features"]:
|
114 |
geom_type = feature["geometry"]["type"]
|
115 |
coords = feature["geometry"]["coordinates"]
|
116 |
+
|
117 |
if geom_type == "Point":
|
118 |
+
m.add_marker(CircleMarker((coords[0], coords[1]), 'blue', 10))
|
119 |
elif geom_type in ["MultiPoint", "LineString"]:
|
120 |
+
for coord in coords:
|
121 |
+
m.add_marker(CircleMarker((coord[0], coord[1]), 'red', 10))
|
122 |
+
elif geom_type in ["Polygon", "MultiPolygon"]:
|
|
|
|
|
123 |
for polygon in coords:
|
124 |
+
m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], 'green', 3))
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
image = m.render(zoom=10)
|
127 |
+
return Image.fromarray(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
# ControlNet pipeline setup
|
130 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
|
|
|
159 |
geojson_data = generate_geojson(response)
|
160 |
|
161 |
# Generate map image
|
162 |
+
map_image = generate_static_map(geojson_data)
|
163 |
|
164 |
# Generate mask for ControlNet
|
165 |
+
empty_map = Image.new("RGB", map_image.size, "white")
|
166 |
+
difference = np.array(map_image) - np.array(empty_map)
|
167 |
+
mask = np.any(difference != 0, axis=-1).astype(np.uint8) * 255
|
|
|
168 |
|
169 |
# Convert mask to PIL Image
|
170 |
mask_image = Image.fromarray(mask)
|
requirements.txt
CHANGED
@@ -10,4 +10,5 @@ spaces
|
|
10 |
torchvision
|
11 |
opencv-python
|
12 |
torch
|
|
|
13 |
selenium
|
|
|
10 |
torchvision
|
11 |
opencv-python
|
12 |
torch
|
13 |
+
staticmap
|
14 |
selenium
|