Commit
·
260542b
1
Parent(s):
6e2ff33
init
Browse files- README.md +65 -1
- app.py +280 -50
- app.py.bk +64 -0
- requirements.txt +9 -1
README.md
CHANGED
@@ -11,4 +11,68 @@ license: mit
|
|
11 |
short_description: apply_lora_and_quantize
|
12 |
---
|
13 |
|
14 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
short_description: apply_lora_and_quantize
|
12 |
---
|
13 |
|
14 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
15 |
+
|
16 |
+
# Model Converter for HuggingFace
|
17 |
+
|
18 |
+
A powerful tool for converting and quantizing Large Language Models (LLMs) with LoRA adapters.
|
19 |
+
|
20 |
+
## Features
|
21 |
+
|
22 |
+
- 🚀 Automatic system resource detection (CPU/GPU)
|
23 |
+
- 🔄 Merge base models with LoRA adapters
|
24 |
+
- 📊 Support for 4-bit and 8-bit quantization
|
25 |
+
- ☁️ Automatic upload to HuggingFace Hub
|
26 |
+
|
27 |
+
## Requirements
|
28 |
+
|
29 |
+
- Python 3.8+
|
30 |
+
- CUDA compatible GPU (optional, but recommended)
|
31 |
+
- HuggingFace account and token
|
32 |
+
|
33 |
+
## Installation
|
34 |
+
|
35 |
+
```bash
|
36 |
+
pip install -r requirements.txt
|
37 |
+
```
|
38 |
+
|
39 |
+
## Configuration
|
40 |
+
|
41 |
+
Create a `.env` file in the project root:
|
42 |
+
```
|
43 |
+
HF_TOKEN=your_huggingface_token
|
44 |
+
```
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
Run the script:
|
49 |
+
```bash
|
50 |
+
python space_convert.py
|
51 |
+
```
|
52 |
+
|
53 |
+
You will be prompted to enter:
|
54 |
+
1. Base model path (e.g., "Qwen/Qwen2.5-7B-Instruct")
|
55 |
+
2. LoRA model path
|
56 |
+
3. Target HuggingFace repository name
|
57 |
+
|
58 |
+
The script will:
|
59 |
+
1. Check available system resources
|
60 |
+
2. Choose the optimal device (GPU/CPU)
|
61 |
+
3. Merge the base model with LoRA
|
62 |
+
4. Create 8-bit and 4-bit quantized versions
|
63 |
+
5. Upload everything to HuggingFace
|
64 |
+
|
65 |
+
## Memory Requirements
|
66 |
+
|
67 |
+
- 7B models: ~16GB RAM/VRAM
|
68 |
+
- 14B models: ~32GB RAM/VRAM
|
69 |
+
- Additional disk space: 3x model size
|
70 |
+
|
71 |
+
## Note
|
72 |
+
|
73 |
+
The script automatically handles:
|
74 |
+
- Resource availability checks
|
75 |
+
- Device selection
|
76 |
+
- Error handling
|
77 |
+
- Progress tracking
|
78 |
+
- Model optimization
|
app.py
CHANGED
@@ -1,64 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import psutil
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
5 |
+
from peft import PeftModel, PeftConfig
|
6 |
+
from pathlib import Path
|
7 |
+
from tqdm import tqdm
|
8 |
+
from huggingface_hub import login, create_repo, HfApi
|
9 |
+
import subprocess
|
10 |
+
import math
|
11 |
+
from dotenv import load_dotenv
|
12 |
import gradio as gr
|
13 |
+
import threading
|
14 |
+
import queue
|
15 |
+
import time
|
16 |
|
17 |
+
# 创建一个队列用于存储日志消息
|
18 |
+
log_queue = queue.Queue()
|
19 |
+
current_logs = []
|
|
|
20 |
|
21 |
+
def log(msg):
|
22 |
+
"""统一的日志处理函数"""
|
23 |
+
print(msg)
|
24 |
+
current_logs.append(msg)
|
25 |
+
return "\n".join(current_logs)
|
26 |
|
27 |
+
def get_model_size_in_gb(model_name):
|
28 |
+
"""估算模型大小(以GB为单位)"""
|
29 |
+
try:
|
30 |
+
config = AutoConfig.from_pretrained(model_name)
|
31 |
+
num_params = config.num_parameters if hasattr(config, 'num_parameters') else None
|
32 |
+
|
33 |
+
if num_params is None:
|
34 |
+
# 手动计算参数量
|
35 |
+
if hasattr(config, 'num_hidden_layers') and hasattr(config, 'hidden_size'):
|
36 |
+
# 简单估算,可能不够准确
|
37 |
+
num_params = config.num_hidden_layers * config.hidden_size * config.hidden_size * 4
|
38 |
+
|
39 |
+
if num_params:
|
40 |
+
# 每个参数占用2字节(float16)
|
41 |
+
size_in_gb = (num_params * 2) / (1024 ** 3)
|
42 |
+
return size_in_gb
|
43 |
+
else:
|
44 |
+
# 如果无法计算,返回一个保守的估计
|
45 |
+
return 16 # 默认假设是7B模型
|
46 |
+
except Exception as e:
|
47 |
+
log(f"无法估算模型大小: {str(e)}")
|
48 |
+
return 16 # 默认返回16GB
|
49 |
|
50 |
+
def check_system_resources(model_name):
|
51 |
+
"""检查系统资源并决定使用什么设备"""
|
52 |
+
log("正在检查系统资源...")
|
53 |
+
|
54 |
+
# 获取系统内存信息
|
55 |
+
system_memory = psutil.virtual_memory()
|
56 |
+
total_memory_gb = system_memory.total / (1024 ** 3)
|
57 |
+
available_memory_gb = system_memory.available / (1024 ** 3)
|
58 |
+
|
59 |
+
log(f"系统总内存: {total_memory_gb:.1f}GB")
|
60 |
+
log(f"可用内存: {available_memory_gb:.1f}GB")
|
61 |
+
|
62 |
+
# 估算模型所需内存
|
63 |
+
model_size_gb = get_model_size_in_gb(model_name)
|
64 |
+
required_memory_gb = model_size_gb * 2.5 # 需要额外的内存用于计算
|
65 |
+
log(f"估计模型需要内存: {required_memory_gb:.1f}GB")
|
66 |
+
|
67 |
+
# 检查CUDA是否可用
|
68 |
+
if torch.cuda.is_available():
|
69 |
+
gpu_name = torch.cuda.get_device_name(0)
|
70 |
+
gpu_memory_gb = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3)
|
71 |
+
log(f"发现GPU: {gpu_name}")
|
72 |
+
log(f"GPU显存: {gpu_memory_gb:.1f}GB")
|
73 |
+
|
74 |
+
if gpu_memory_gb >= required_memory_gb:
|
75 |
+
log("✅ GPU显存足够,将使用GPU进行转换")
|
76 |
+
return "cuda", gpu_memory_gb
|
77 |
+
else:
|
78 |
+
log(f"⚠️ GPU显存不足 (需要 {required_memory_gb:.1f}GB, 实际 {gpu_memory_gb:.1f}GB)")
|
79 |
+
else:
|
80 |
+
log("❌ 未检测到可用的GPU")
|
81 |
+
|
82 |
+
# 检查CPU内存是否足够
|
83 |
+
if available_memory_gb >= required_memory_gb:
|
84 |
+
log("✅ CPU内存足够,将使用CPU进行转换")
|
85 |
+
return "cpu", available_memory_gb
|
86 |
+
else:
|
87 |
+
raise MemoryError(f"❌ 系统内存不足 (需要 {required_memory_gb:.1f}GB, 可用 {available_memory_gb:.1f}GB)")
|
88 |
|
89 |
+
def setup_environment(model_name):
|
90 |
+
"""设置环境并返回设备信息"""
|
91 |
+
load_dotenv()
|
92 |
+
hf_token = os.getenv('HF_TOKEN')
|
93 |
+
if not hf_token:
|
94 |
+
raise ValueError("请在环境变量中设置HF_TOKEN")
|
95 |
+
login(hf_token)
|
96 |
+
|
97 |
+
# 检查系统资源并决定使用什么设备
|
98 |
+
device, available_memory = check_system_resources(model_name)
|
99 |
+
return device
|
100 |
|
101 |
+
def create_hf_repo(repo_name, private=True):
|
102 |
+
"""创建HuggingFace仓库"""
|
103 |
+
try:
|
104 |
+
repo_url = create_repo(repo_name, private=private)
|
105 |
+
log(f"创建仓库成功: {repo_url}")
|
106 |
+
return repo_url
|
107 |
+
except Exception as e:
|
108 |
+
log(f"创建仓库失败: {str(e)}")
|
109 |
+
raise
|
110 |
|
111 |
+
def download_and_merge_model(base_model_name, lora_model_name, output_dir, device):
|
112 |
+
log(f"正在加��基础模型: {base_model_name}")
|
113 |
+
|
114 |
+
try:
|
115 |
+
# 先加载原始模型
|
116 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
117 |
+
base_model_name,
|
118 |
+
torch_dtype=torch.float16,
|
119 |
+
device_map={"": device}
|
120 |
+
)
|
121 |
+
|
122 |
+
# 加载tokenizer
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
124 |
+
|
125 |
+
log(f"正在加载LoRA模型: {lora_model_name}")
|
126 |
+
log("基础模型配置:" + str(base_model.config))
|
127 |
+
|
128 |
+
# 加载adapter配置
|
129 |
+
adapter_config = PeftConfig.from_pretrained(lora_model_name)
|
130 |
+
log("Adapter配置:" + str(adapter_config))
|
131 |
+
|
132 |
+
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
133 |
+
log("正在合并LoRA权重")
|
134 |
+
model = model.merge_and_unload()
|
135 |
|
136 |
+
# 创建输出目录
|
137 |
+
output_path = Path(output_dir)
|
138 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
139 |
|
140 |
+
# 保存合并后的模型
|
141 |
+
log(f"正在保存合并后的模型到: {output_dir}")
|
142 |
+
model.save_pretrained(output_dir)
|
143 |
+
tokenizer.save_pretrained(output_dir)
|
144 |
+
|
145 |
+
return output_dir
|
146 |
+
|
147 |
+
except Exception as e:
|
148 |
+
log(f"错误: {str(e)}")
|
149 |
+
log(f"错误类型: {type(e)}")
|
150 |
+
import traceback
|
151 |
+
log("详细错误信息:")
|
152 |
+
log(traceback.format_exc())
|
153 |
+
raise
|
154 |
|
155 |
+
def quantize_and_push_model(model_path, repo_id, bits=8):
|
156 |
+
"""量化模型并推送到HuggingFace"""
|
157 |
+
try:
|
158 |
+
from optimum.bettertransformer import BetterTransformer
|
159 |
+
from transformers import AutoModelForCausalLM
|
160 |
+
|
161 |
+
log(f"正在加载模型用于{bits}位量化...")
|
162 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
163 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
164 |
+
|
165 |
+
# 转换为BetterTransformer格式
|
166 |
+
model = BetterTransformer.transform(model)
|
167 |
+
|
168 |
+
# 量化
|
169 |
+
if bits == 8:
|
170 |
+
from transformers import BitsAndBytesConfig
|
171 |
+
quantization_config = BitsAndBytesConfig(
|
172 |
+
load_in_8bit=True,
|
173 |
+
llm_int8_threshold=6.0
|
174 |
+
)
|
175 |
+
elif bits == 4:
|
176 |
+
from transformers import BitsAndBytesConfig
|
177 |
+
quantization_config = BitsAndBytesConfig(
|
178 |
+
load_in_4bit=True,
|
179 |
+
bnb_4bit_compute_dtype=torch.float16,
|
180 |
+
bnb_4bit_quant_type="nf4"
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
raise ValueError(f"不支持的量化位数: {bits}")
|
184 |
+
|
185 |
+
# 保存量化后的模型
|
186 |
+
quantized_model_path = f"{model_path}_q{bits}"
|
187 |
+
model.save_pretrained(
|
188 |
+
quantized_model_path,
|
189 |
+
quantization_config=quantization_config
|
190 |
+
)
|
191 |
+
tokenizer.save_pretrained(quantized_model_path)
|
192 |
+
|
193 |
+
# 推送到HuggingFace
|
194 |
+
log(f"正在将{bits}位量化模型推送到HuggingFace...")
|
195 |
+
api = HfApi()
|
196 |
+
api.upload_folder(
|
197 |
+
folder_path=quantized_model_path,
|
198 |
+
repo_id=repo_id,
|
199 |
+
repo_type="model"
|
200 |
+
)
|
201 |
+
log(f"{bits}位量化模型上传完成")
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
log(f"量化或上传过程中出错: {str(e)}")
|
205 |
+
raise
|
206 |
|
207 |
+
def process_model(base_model, lora_model, repo_name, progress=gr.Progress()):
|
208 |
+
"""处理模型的主函数,用于Gradio界面"""
|
209 |
+
try:
|
210 |
+
# 清空之前的日志
|
211 |
+
current_logs.clear()
|
212 |
+
|
213 |
+
# 设置环境和检查资源
|
214 |
+
device = setup_environment(base_model)
|
215 |
+
|
216 |
+
# 创建HuggingFace仓库
|
217 |
+
repo_url = create_hf_repo(repo_name)
|
218 |
+
|
219 |
+
# 设置输出目录
|
220 |
+
output_dir = os.path.join(".", "output", repo_name)
|
221 |
+
|
222 |
+
progress(0.1, desc="开始模型转换流程...")
|
223 |
+
# 下载并合并模型
|
224 |
+
model_path = download_and_merge_model(base_model, lora_model, output_dir, device)
|
225 |
+
|
226 |
+
progress(0.4, desc="开始8位量化...")
|
227 |
+
# 量化并上传模型
|
228 |
+
quantize_and_push_model(model_path, repo_name, bits=8)
|
229 |
+
|
230 |
+
progress(0.7, desc="开始4位量化...")
|
231 |
+
quantize_and_push_model(model_path, repo_name, bits=4)
|
232 |
+
|
233 |
+
final_message = f"全部完成!模型已上传至: https://huggingface.co/{repo_name}"
|
234 |
+
log(final_message)
|
235 |
+
progress(1.0, desc="处理完成")
|
236 |
+
|
237 |
+
return "\n".join(current_logs)
|
238 |
+
except Exception as e:
|
239 |
+
error_message = f"处理过程中出错: {str(e)}"
|
240 |
+
log(error_message)
|
241 |
+
return "\n".join(current_logs)
|
242 |
+
|
243 |
+
def create_ui():
|
244 |
+
"""创建Gradio界面"""
|
245 |
+
with gr.Blocks(title="模型转换工具") as app:
|
246 |
+
gr.Markdown("""
|
247 |
+
# 🤗 模型转换与量化工具
|
248 |
+
|
249 |
+
这个工具可以帮助你:
|
250 |
+
1. 合并基础模型和LoRA适配器
|
251 |
+
2. 创建4位和8位量化版本
|
252 |
+
3. 自动上传到HuggingFace Hub
|
253 |
+
""")
|
254 |
+
|
255 |
+
with gr.Row():
|
256 |
+
with gr.Column():
|
257 |
+
base_model = gr.Textbox(
|
258 |
+
label="基础模型路径",
|
259 |
+
placeholder="例如: Qwen/Qwen2.5-7B-Instruct",
|
260 |
+
value="Qwen/Qwen2.5-7B-Instruct"
|
261 |
+
)
|
262 |
+
lora_model = gr.Textbox(
|
263 |
+
label="LoRA模型路径",
|
264 |
+
placeholder="输入你的LoRA模型路径"
|
265 |
+
)
|
266 |
+
repo_name = gr.Textbox(
|
267 |
+
label="HuggingFace仓库名称",
|
268 |
+
placeholder="输入要创建的仓库名称"
|
269 |
+
)
|
270 |
+
convert_btn = gr.Button("开始转换", variant="primary")
|
271 |
+
|
272 |
+
with gr.Column():
|
273 |
+
output = gr.TextArea(
|
274 |
+
label="处理日志",
|
275 |
+
placeholder="处理日志将在这里显示...",
|
276 |
+
interactive=False,
|
277 |
+
autoscroll=True,
|
278 |
+
lines=20
|
279 |
+
)
|
280 |
+
|
281 |
+
# 设置事件处理
|
282 |
+
convert_btn.click(
|
283 |
+
fn=process_model,
|
284 |
+
inputs=[base_model, lora_model, repo_name],
|
285 |
+
outputs=output
|
286 |
+
)
|
287 |
+
|
288 |
+
return app
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
+
# 创建并启动Gradio界面
|
292 |
+
app = create_ui()
|
293 |
+
app.queue()
|
294 |
+
app.launch()
|
app.py.bk
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
+
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
+
|
42 |
+
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
+
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,9 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
peft
|
5 |
+
huggingface_hub
|
6 |
+
psutil
|
7 |
+
tqdm
|
8 |
+
python-dotenv
|
9 |
+
gradio
|