Commit
·
039130e
1
Parent(s):
abba0b6
- .gitignore +2 -1
- app.py +32 -12
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
*.log
|
2 |
-
output
|
|
|
|
1 |
*.log
|
2 |
+
output
|
3 |
+
temp
|
app.py
CHANGED
@@ -53,8 +53,7 @@ def check_system_resources(model_name):
|
|
53 |
log.info(f"Total system memory: {MEMORY}GB")
|
54 |
|
55 |
model_size_gb = get_model_size_in_gb(model_name)
|
56 |
-
|
57 |
-
required_memory_gb = required_memory_gb_16bit
|
58 |
|
59 |
|
60 |
log.info(f"Estimated required memory for model: {required_memory_gb:.1f}GB")
|
@@ -124,20 +123,21 @@ def download_and_merge_model(base_model_name, lora_model_name, output_dir, devic
|
|
124 |
"""
|
125 |
os.makedirs("temp", exist_ok=True)
|
126 |
log.info("Loading base model...")
|
127 |
-
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
128 |
log.info("Loading adapter tokenizer...")
|
129 |
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto", force_download=True)
|
130 |
log.info("Resizing token embeddings...")
|
131 |
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
|
132 |
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
|
133 |
log.info("Loading LoRA adapter...")
|
134 |
-
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
135 |
log.info("Merging and unloading model...")
|
136 |
model = peft_model.merge_and_unload()
|
137 |
log.info("Saving model...")
|
138 |
model.save_pretrained(output_dir)
|
139 |
adapter_tokenizer.save_pretrained(output_dir)
|
140 |
del model, peft_model
|
|
|
141 |
return output_dir
|
142 |
|
143 |
@timeit
|
@@ -192,22 +192,25 @@ def quantize(model_path, repo_id, quant_method=None):
|
|
192 |
os.makedirs(model_output_dir, exist_ok=True)
|
193 |
|
194 |
# 中间文件保存在 model_output 目录下
|
195 |
-
|
196 |
|
197 |
-
if not os.path.exists(
|
198 |
log.info(f"正在将模型转换为GGML格式")
|
199 |
convert_script = os.path.join(llamacpp_dir, "convert_hf_to_gguf.py")
|
200 |
-
convert_cmd = f"python {convert_script} {model_path} --outfile {
|
201 |
print(f"syscall:[{convert_cmd}]")
|
202 |
os.system(convert_cmd)
|
203 |
else:
|
204 |
log.info(f"GGML中间文件已存在,跳过转换")
|
|
|
|
|
|
|
205 |
|
206 |
# 最终文件保存在 model_output 目录下
|
207 |
final_path = os.path.join(model_output_dir, f"{repo_id}-{quant_method}.gguf")
|
208 |
log.info(f"正在进行{quant_method}量化")
|
209 |
quantize_bin = os.path.join(llamacpp_dir, "build", "bin", "llama-quantize")
|
210 |
-
quant_cmd = f"{quantize_bin} {
|
211 |
print(f"syscall:[{quant_cmd}]")
|
212 |
|
213 |
if not os.path.exists(final_path):
|
@@ -294,12 +297,9 @@ def process_model(base_model_name, lora_model_name, repo_name, quant_methods, hf
|
|
294 |
model_path = download_and_merge_model(base_model_name, lora_model_name, output_dir, device)
|
295 |
|
296 |
|
297 |
-
# 量化模型
|
298 |
-
for quant_method in quant_methods:
|
299 |
-
quantize(output_dir, repo_name, quant_method=quant_method)
|
300 |
-
|
301 |
create_readme(repo_name, base_model_name, lora_model_name, quant_methods)
|
302 |
|
|
|
303 |
# 上传合并后的模型和量化模型
|
304 |
api.upload_large_folder(
|
305 |
folder_path=model_path,
|
@@ -310,6 +310,26 @@ def process_model(base_model_name, lora_model_name, repo_name, quant_methods, hf
|
|
310 |
)
|
311 |
log.info("Upload completed.")
|
312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
# rm -rf model_path
|
314 |
shutil.rmtree(model_path)
|
315 |
log.info("Removed model from local")
|
|
|
53 |
log.info(f"Total system memory: {MEMORY}GB")
|
54 |
|
55 |
model_size_gb = get_model_size_in_gb(model_name)
|
56 |
+
required_memory_gb = model_size_gb * 2.5
|
|
|
57 |
|
58 |
|
59 |
log.info(f"Estimated required memory for model: {required_memory_gb:.1f}GB")
|
|
|
123 |
"""
|
124 |
os.makedirs("temp", exist_ok=True)
|
125 |
log.info("Loading base model...")
|
126 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16, cache_dir="temp")
|
127 |
log.info("Loading adapter tokenizer...")
|
128 |
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto", force_download=True)
|
129 |
log.info("Resizing token embeddings...")
|
130 |
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
|
131 |
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
|
132 |
log.info("Loading LoRA adapter...")
|
133 |
+
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16, cache_dir="temp")
|
134 |
log.info("Merging and unloading model...")
|
135 |
model = peft_model.merge_and_unload()
|
136 |
log.info("Saving model...")
|
137 |
model.save_pretrained(output_dir)
|
138 |
adapter_tokenizer.save_pretrained(output_dir)
|
139 |
del model, peft_model
|
140 |
+
shutil.rmtree("temp") # to save space due to huggingface space limit(50GB)
|
141 |
return output_dir
|
142 |
|
143 |
@timeit
|
|
|
192 |
os.makedirs(model_output_dir, exist_ok=True)
|
193 |
|
194 |
# 中间文件保存在 model_output 目录下
|
195 |
+
guff_16_path =f"./{repo_id}-f16.gguf"
|
196 |
|
197 |
+
if not os.path.exists(guff_16_path):
|
198 |
log.info(f"正在将模型转换为GGML格式")
|
199 |
convert_script = os.path.join(llamacpp_dir, "convert_hf_to_gguf.py")
|
200 |
+
convert_cmd = f"python {convert_script} {model_path} --outfile {guff_16_path}"
|
201 |
print(f"syscall:[{convert_cmd}]")
|
202 |
os.system(convert_cmd)
|
203 |
else:
|
204 |
log.info(f"GGML中间文件已存在,跳过转换")
|
205 |
+
|
206 |
+
if quant_method == "fp16":
|
207 |
+
return guff_16_path # for upload to hub
|
208 |
|
209 |
# 最终文件保存在 model_output 目录下
|
210 |
final_path = os.path.join(model_output_dir, f"{repo_id}-{quant_method}.gguf")
|
211 |
log.info(f"正在进行{quant_method}量化")
|
212 |
quantize_bin = os.path.join(llamacpp_dir, "build", "bin", "llama-quantize")
|
213 |
+
quant_cmd = f"{quantize_bin} {guff_16_path} {final_path} {quant_method}"
|
214 |
print(f"syscall:[{quant_cmd}]")
|
215 |
|
216 |
if not os.path.exists(final_path):
|
|
|
297 |
model_path = download_and_merge_model(base_model_name, lora_model_name, output_dir, device)
|
298 |
|
299 |
|
|
|
|
|
|
|
|
|
300 |
create_readme(repo_name, base_model_name, lora_model_name, quant_methods)
|
301 |
|
302 |
+
|
303 |
# 上传合并后的模型和量化模型
|
304 |
api.upload_large_folder(
|
305 |
folder_path=model_path,
|
|
|
310 |
)
|
311 |
log.info("Upload completed.")
|
312 |
|
313 |
+
# remove model for space limit
|
314 |
+
shutil.rmtree(model_path)
|
315 |
+
|
316 |
+
os.makedirs(os.path.join(output_dir, "quantized"), exist_ok=True)
|
317 |
+
if len(quant_methods) > 0:
|
318 |
+
quantize(output_dir, repo_name, "fp16") # for
|
319 |
+
# 量化模型
|
320 |
+
for quant_method in quant_methods:
|
321 |
+
quantize(output_dir, repo_name, quant_method=quant_method)
|
322 |
+
os.system(f"mv ./{repo_name}-f16.gguf ./{output_dir}/quantized/")
|
323 |
+
|
324 |
+
api.upload_folder(
|
325 |
+
folder_path=os.path.join(output_dir, "quantized"),
|
326 |
+
path_in_repo="quantized",
|
327 |
+
repo_id=repo_name,
|
328 |
+
repo_type="model",
|
329 |
+
num_workers=os.cpu_count() if os.cpu_count() > 4 else 4,
|
330 |
+
print_report_every=10,
|
331 |
+
)
|
332 |
+
|
333 |
# rm -rf model_path
|
334 |
shutil.rmtree(model_path)
|
335 |
log.info("Removed model from local")
|