Spaces:
Runtime error
Runtime error
Steven-GU-Yu-Di
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,42 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
-
# Load the text classification model
|
6 |
-
classifier = pipeline("text-classification")
|
7 |
# Load the Visual Question Answering (VQA) model
|
8 |
-
vqa_model =
|
9 |
-
# Load the Text-to-Speech model
|
10 |
-
tts_model = Text2SpeechPipeline("facebook/wav2vec2-base-960h")
|
11 |
|
12 |
# Create a Streamlit app
|
13 |
-
st.title("
|
14 |
|
15 |
# Sidebar for user inputs
|
16 |
-
st.
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
def classify(image, text, question):
|
23 |
-
if image is not None and text:
|
24 |
image = Image.open(image)
|
25 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
26 |
-
st.write("
|
27 |
-
st.write("Question for Image:", question)
|
28 |
-
|
29 |
-
# Text classification
|
30 |
-
text_result = classifier(text)
|
31 |
-
st.write("Text Classification Result:")
|
32 |
-
st.write(text_result)
|
33 |
|
34 |
# Visual Question Answering
|
35 |
vqa_input = {
|
36 |
"question": question,
|
37 |
-
"context":
|
38 |
}
|
39 |
-
vqa_output = vqa_model(vqa_input)
|
40 |
-
|
41 |
-
st.write(
|
42 |
-
|
43 |
-
# Text-to-Speech
|
44 |
-
|
45 |
-
|
46 |
-
st.audio(
|
47 |
-
|
48 |
-
# Button to trigger
|
49 |
-
if st.
|
50 |
-
|
|
|
1 |
+
!pip install streamlit transformers gtts
|
2 |
+
|
3 |
import streamlit as st
|
4 |
+
from transformers import pipeline
|
5 |
from PIL import Image
|
6 |
+
from gtts import gTTS
|
7 |
+
import os
|
8 |
|
|
|
|
|
9 |
# Load the Visual Question Answering (VQA) model
|
10 |
+
vqa_model = pipeline("question-answering")
|
|
|
|
|
11 |
|
12 |
# Create a Streamlit app
|
13 |
+
st.title("Visual Question Answering and Text-to-Speech")
|
14 |
|
15 |
# Sidebar for user inputs
|
16 |
+
uploaded_image = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
17 |
+
question_input = st.text_input("Enter Question")
|
18 |
+
|
19 |
+
# Function to perform Visual Question Answering
|
20 |
+
def perform_vqa(image, question):
|
21 |
+
if image is not None and question:
|
|
|
|
|
22 |
image = Image.open(image)
|
23 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
24 |
+
st.write("Question:", question)
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Visual Question Answering
|
27 |
vqa_input = {
|
28 |
"question": question,
|
29 |
+
"context": "This is an image.",
|
30 |
}
|
31 |
+
vqa_output = vqa_model(image=image, **vqa_input)
|
32 |
+
answer = vqa_output['answer']
|
33 |
+
st.write("Answer:", answer)
|
34 |
+
|
35 |
+
# Text-to-Speech using gTTS
|
36 |
+
tts = gTTS(answer)
|
37 |
+
tts.save("output.mp3")
|
38 |
+
st.audio("output.mp3", format='audio/mp3')
|
39 |
+
|
40 |
+
# Button to trigger Visual Question Answering and Text-to-Speech
|
41 |
+
if st.button("Perform VQA and TTS"):
|
42 |
+
perform_vqa(uploaded_image, question_input)
|