Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,354 Bytes
0af138e 748ecaa 1be704d 748ecaa 71064d4 748ecaa e5d26e9 0af138e 1be704d 46f1390 1be704d 46f1390 0af138e 1be704d 22bde2c 1be704d 46f1390 1be704d 22bde2c 46f1390 0af138e 1be704d 0af138e 1be704d 46f1390 1be704d 22bde2c 1be704d 22bde2c 1be704d 46f1390 1be704d 46f1390 71064d4 1be704d 71064d4 1be704d 71064d4 1be704d 46f1390 1be704d 46f1390 1be704d 46f1390 1be704d 46f1390 97132bd 1be704d 65e9ec3 d7c8d6c 1be704d d7c8d6c 1be704d d7c8d6c 1be704d d7c8d6c 1be704d 46f1390 1be704d d7c8d6c 1be704d d7c8d6c 1be704d d5d8bf3 46f1390 1be704d 46f1390 1be704d 46f1390 1be704d 46f1390 748ecaa 1be704d 748ecaa 1be704d 0af138e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import os
import shlex
import subprocess
subprocess.run(shlex.split("pip install flash-attn --no-build-isolation"), env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, check=True)
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), check=True)
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"), check=True)
import spaces
import torch
import torchaudio
import gradio as gr
from os import getenv
from zonos.model import Zonos
from zonos.conditioning import make_cond_dict, supported_language_codes
device = "cuda"
MODEL_NAMES = ["Zyphra/Zonos-v0.1-transformer", "Zyphra/Zonos-v0.1-hybrid"]
MODELS = {name: Zonos.from_pretrained(name, device=device) for name in MODEL_NAMES}
for model in MODELS.values():
model.requires_grad_(False).eval()
def update_ui(model_choice):
"""
Dynamically show/hide UI elements based on the model's conditioners.
We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model.
"""
model = MODELS[model_choice]
cond_names = [c.name for c in model.prefix_conditioner.conditioners]
print("Conditioners in this model:", cond_names)
text_update = gr.update(visible=("espeak" in cond_names))
language_update = gr.update(visible=("espeak" in cond_names))
speaker_audio_update = gr.update(visible=("speaker" in cond_names))
prefix_audio_update = gr.update(visible=True)
emotion1_update = gr.update(visible=("emotion" in cond_names))
emotion2_update = gr.update(visible=("emotion" in cond_names))
emotion3_update = gr.update(visible=("emotion" in cond_names))
emotion4_update = gr.update(visible=("emotion" in cond_names))
emotion5_update = gr.update(visible=("emotion" in cond_names))
emotion6_update = gr.update(visible=("emotion" in cond_names))
emotion7_update = gr.update(visible=("emotion" in cond_names))
emotion8_update = gr.update(visible=("emotion" in cond_names))
vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names))
fmax_slider_update = gr.update(visible=("fmax" in cond_names))
pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names))
speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names))
dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names))
unconditional_keys_update = gr.update(
choices=[name for name in cond_names if name not in ("espeak", "language_id")]
)
return (
text_update,
language_update,
speaker_audio_update,
prefix_audio_update,
emotion1_update,
emotion2_update,
emotion3_update,
emotion4_update,
emotion5_update,
emotion6_update,
emotion7_update,
emotion8_update,
vq_single_slider_update,
fmax_slider_update,
pitch_std_slider_update,
speaking_rate_slider_update,
dnsmos_slider_update,
speaker_noised_checkbox_update,
unconditional_keys_update,
)
@spaces.GPU(duration=120)
def generate_audio(
model_choice,
text,
language,
speaker_audio,
prefix_audio,
e1,
e2,
e3,
e4,
e5,
e6,
e7,
e8,
vq_single,
fmax,
pitch_std,
speaking_rate,
dnsmos_ovrl,
speaker_noised,
cfg_scale,
min_p,
seed,
randomize_seed,
unconditional_keys,
progress=gr.Progress(),
):
"""
Generates audio based on the provided UI parameters.
We do NOT use language_id or ctc_loss even if the model has them.
"""
selected_model = MODELS[model_choice]
speaker_noised_bool = bool(speaker_noised)
fmax = float(fmax)
pitch_std = float(pitch_std)
speaking_rate = float(speaking_rate)
dnsmos_ovrl = float(dnsmos_ovrl)
cfg_scale = float(cfg_scale)
min_p = float(min_p)
seed = int(seed)
max_new_tokens = 86 * 30
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
torch.manual_seed(seed)
speaker_embedding = None
if speaker_audio is not None and "speaker" not in unconditional_keys:
wav, sr = torchaudio.load(speaker_audio)
speaker_embedding = selected_model.make_speaker_embedding(wav, sr)
speaker_embedding = speaker_embedding.to(device, dtype=torch.bfloat16)
audio_prefix_codes = None
if prefix_audio is not None:
wav_prefix, sr_prefix = torchaudio.load(prefix_audio)
wav_prefix = wav_prefix.mean(0, keepdim=True)
wav_prefix = torchaudio.functional.resample(wav_prefix, sr_prefix, selected_model.autoencoder.sampling_rate)
wav_prefix = wav_prefix.to(device, dtype=torch.float32)
with torch.autocast(device, dtype=torch.float32):
audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0))
emotion_tensor = torch.tensor(list(map(float, [e1, e2, e3, e4, e5, e6, e7, e8])), device=device)
vq_val = float(vq_single)
vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0)
cond_dict = make_cond_dict(
text=text,
language=language,
speaker=speaker_embedding,
emotion=emotion_tensor,
vqscore_8=vq_tensor,
fmax=fmax,
pitch_std=pitch_std,
speaking_rate=speaking_rate,
dnsmos_ovrl=dnsmos_ovrl,
speaker_noised=speaker_noised_bool,
device=device,
unconditional_keys=unconditional_keys,
)
conditioning = selected_model.prepare_conditioning(cond_dict)
estimated_generation_duration = 30 * len(text) / 400
estimated_total_steps = int(estimated_generation_duration * 86)
def update_progress(_frame: torch.Tensor, step: int, _total_steps: int) -> bool:
progress((step, estimated_total_steps))
return True
codes = selected_model.generate(
prefix_conditioning=conditioning,
audio_prefix_codes=audio_prefix_codes,
max_new_tokens=max_new_tokens,
cfg_scale=cfg_scale,
batch_size=1,
sampling_params=dict(min_p=min_p),
callback=update_progress,
)
wav_out = selected_model.autoencoder.decode(codes).cpu().detach()
sr_out = selected_model.autoencoder.sampling_rate
if wav_out.dim() == 2 and wav_out.size(0) > 1:
wav_out = wav_out[0:1, :]
return (sr_out, wav_out.squeeze().numpy()), seed
def build_interface():
with gr.Blocks(theme='ParityError/Interstellar') as demo:
gr.Markdown("# Zonos v0.1")
gr.Markdown("State of the art text-to-speech model [[model]](https://huggingface.co/collections/Zyphra/zonos-v01-67ac661c85e1898670823b4f), [[blog]](https://www.zyphra.com/post/beta-release-of-zonos-v0-1), [[Zyphra Audio (hosted service)]](https://maia.zyphra.com/sign-in?redirect_url=https%3A%2F%2Fmaia.zyphra.com%2Faudio) ")
with gr.Row():
with gr.Column():
text = gr.Textbox(
label="Text to Synthesize",
value="Zonos uses eSpeak for text to phoneme conversion!",
lines=4,
max_length=500, # approximately
)
language = gr.Dropdown(
choices=supported_language_codes,
value="en-us",
label="Language",
)
model_choice = gr.Dropdown(
choices=MODEL_NAMES,
value="Zyphra/Zonos-v0.1-transformer",
label="Zonos Model Type",
info="Select the model variant to use.",
)
speaker_audio = gr.Audio(
label="Optional Speaker Audio (for cloning)",
type="filepath",
)
generate_button = gr.Button("Generate Audio")
#with gr.Column():
speaker_noised_checkbox = gr.Checkbox(
label="Denoise Speaker?",
value=False,
visible=False
)
with gr.Column():
output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True)
with gr.Accordion("Toggles", open=True):
gr.Markdown(
"### Emotion Sliders\n"
"Warning: The way these sliders work is not intuitive and may require some trial and error to get the desired effect.\n"
"Certain configurations can cause the model to become unstable. Setting emotion to unconditional may help."
)
with gr.Row():
emotion1 = gr.Slider(0.0, 1.0, 1.0, 0.05, label="Happiness")
emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness")
emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust")
emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear")
with gr.Row():
emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise")
emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger")
emotion7 = gr.Slider(0.0, 1.0, 0.1, 0.05, label="Other")
emotion8 = gr.Slider(0.0, 1.0, 0.2, 0.05, label="Neutral")
gr.Markdown(
"### Unconditional Toggles\n"
"Checking a box will make the model ignore the corresponding conditioning value and make it unconditional.\n"
'Practically this means the given conditioning feature will be unconstrained and "filled in automatically".'
)
with gr.Row():
unconditional_keys = gr.CheckboxGroup(
[
"speaker",
"emotion",
"vqscore_8",
"fmax",
"pitch_std",
"speaking_rate",
"dnsmos_ovrl",
"speaker_noised",
],
value=["emotion"],
label="Unconditional Keys",
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("## Conditioning Parameters")
dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="DNSMOS Overall")
fmax_slider = gr.Slider(0, 24000, value=24000, step=1, label="Fmax (Hz)")
vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="VQ Score")
pitch_std_slider = gr.Slider(0.0, 300.0, value=45.0, step=1, label="Pitch Std")
speaking_rate_slider = gr.Slider(5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate")
with gr.Column():
gr.Markdown("## Generation Parameters")
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="CFG Scale")
min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="Min P")
seed_number = gr.Number(label="Seed", value=420, precision=0)
randomize_seed_toggle = gr.Checkbox(label="Randomize Seed (before generation)", value=True)
prefix_audio = gr.Audio(
value="assets/silence_100ms.wav",
label="Optional Prefix Audio (continue from this audio)",
type="filepath",
)
model_choice.change(
fn=update_ui,
inputs=[model_choice],
outputs=[
text,
language,
speaker_audio,
prefix_audio,
emotion1,
emotion2,
emotion3,
emotion4,
emotion5,
emotion6,
emotion7,
emotion8,
vq_single_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
speaker_noised_checkbox,
unconditional_keys,
],
)
# On page load, trigger the same UI refresh
demo.load(
fn=update_ui,
inputs=[model_choice],
outputs=[
text,
language,
speaker_audio,
prefix_audio,
emotion1,
emotion2,
emotion3,
emotion4,
emotion5,
emotion6,
emotion7,
emotion8,
vq_single_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
speaker_noised_checkbox,
unconditional_keys,
],
)
# Generate audio on button click
generate_button.click(
fn=generate_audio,
inputs=[
model_choice,
text,
language,
speaker_audio,
prefix_audio,
emotion1,
emotion2,
emotion3,
emotion4,
emotion5,
emotion6,
emotion7,
emotion8,
vq_single_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
speaker_noised_checkbox,
cfg_scale_slider,
min_p_slider,
seed_number,
randomize_seed_toggle,
unconditional_keys,
],
outputs=[output_audio, seed_number],
)
return demo
if __name__ == "__main__":
demo = build_interface()
share = getenv("GRADIO_SHARE", "False").lower() in ("true", "1", "t")
demo.launch(server_name="0.0.0.0", server_port=7860, share=share)
|