whisper_leaderboard (#1)
Browse files- added whipser leaderboard (4a6c7b9fe92fc5f986353fdeaebb9abb715f97fd)
- app.py +77 -6
- constants.py +5 -4
- init.py +16 -3
app.py
CHANGED
@@ -22,14 +22,32 @@ column_names = {
|
|
22 |
"Voxpopuli WER": "Voxpopuli",
|
23 |
}
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
if not csv_results.exists():
|
28 |
raise Exception(f"CSV file {csv_results} does not exist locally")
|
29 |
-
|
|
|
|
|
30 |
# Get csv with data and parse columns
|
31 |
original_df = pd.read_csv(csv_results)
|
32 |
-
|
33 |
# Formats the columns
|
34 |
def formatter(x):
|
35 |
if type(x) is str:
|
@@ -43,9 +61,11 @@ for col in original_df.columns:
|
|
43 |
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
|
44 |
else:
|
45 |
original_df[col] = original_df[col].apply(formatter) # For numerical values
|
46 |
-
|
47 |
original_df.rename(columns=column_names, inplace=True)
|
48 |
original_df.sort_values(by='Average WER ⬇️', inplace=True)
|
|
|
|
|
49 |
|
50 |
COLS = [c.name for c in fields(AutoEvalColumn)]
|
51 |
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
@@ -115,11 +135,62 @@ with gr.Blocks(css=LEADERBOARD_CSS) as demo:
|
|
115 |
interactive=False,
|
116 |
visible=True,
|
117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
|
121 |
|
122 |
-
with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=
|
123 |
with gr.Column():
|
124 |
gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text")
|
125 |
with gr.Column():
|
|
|
22 |
"Voxpopuli WER": "Voxpopuli",
|
23 |
}
|
24 |
|
25 |
+
whisper_column_names = {
|
26 |
+
"MODEL": "Model",
|
27 |
+
"Avg. WER": "Average WER ⬇️",
|
28 |
+
"RTFx": "RTFx ⬆️️",
|
29 |
+
"Backend": "Backend",
|
30 |
+
"Hardware": "Device",
|
31 |
+
"AMI WER": "AMI",
|
32 |
+
"Earnings22 WER": "Earnings22",
|
33 |
+
"Gigaspeech WER": "Gigaspeech",
|
34 |
+
"LS Clean WER": "LS Clean",
|
35 |
+
"LS Other WER": "LS Other",
|
36 |
+
"SPGISpeech WER": "SPGISpeech",
|
37 |
+
"Tedlium WER": "Tedlium",
|
38 |
+
"Voxpopuli WER": "Voxpopuli",
|
39 |
+
}
|
40 |
+
|
41 |
+
eval_queue_repo, requested_models, csv_results, whisper_eval_queue_repo, whisper_csv_results = load_all_info_from_dataset_hub()
|
42 |
|
43 |
if not csv_results.exists():
|
44 |
raise Exception(f"CSV file {csv_results} does not exist locally")
|
45 |
+
if not whisper_csv_results.exists():
|
46 |
+
raise Exception(f"CSV file {whisper_csv_results} does not exist locally")
|
47 |
+
|
48 |
# Get csv with data and parse columns
|
49 |
original_df = pd.read_csv(csv_results)
|
50 |
+
whisper_df = pd.read_csv(whisper_csv_results)
|
51 |
# Formats the columns
|
52 |
def formatter(x):
|
53 |
if type(x) is str:
|
|
|
61 |
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
|
62 |
else:
|
63 |
original_df[col] = original_df[col].apply(formatter) # For numerical values
|
64 |
+
whisper_df[col] = whisper_df[col].apply(formatter) # For numerical values
|
65 |
original_df.rename(columns=column_names, inplace=True)
|
66 |
original_df.sort_values(by='Average WER ⬇️', inplace=True)
|
67 |
+
whisper_df.rename(columns=whisper_column_names, inplace=True)
|
68 |
+
whisper_df.sort_values(by='Average WER ⬇️', inplace=True)
|
69 |
|
70 |
COLS = [c.name for c in fields(AutoEvalColumn)]
|
71 |
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
|
|
135 |
interactive=False,
|
136 |
visible=True,
|
137 |
)
|
138 |
+
with gr.TabItem("🔄 Whisper Model Leaderboard", elem_id="whisper-backends-tab", id=1):
|
139 |
+
gr.Markdown("## Whisper Model Performance Across Different Backends", elem_classes="markdown-text")
|
140 |
+
gr.Markdown("This table shows how different Whisper model implementations compare in terms of performance and speed.", elem_classes="markdown-text")
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
backend_filter = gr.Dropdown(
|
144 |
+
choices=["All"] + sorted(whisper_df["Backend"].unique().tolist()),
|
145 |
+
value="All",
|
146 |
+
label="Filter by Backend",
|
147 |
+
elem_id="backend-filter",
|
148 |
+
multiselect=True # Enable multiple selection
|
149 |
+
)
|
150 |
+
device_choices = ["All"] + sorted(whisper_df["Device"].unique().tolist()) if "Device" in whisper_df.columns else ["All"]
|
151 |
+
device_filter = gr.Dropdown(
|
152 |
+
choices=device_choices,
|
153 |
+
value="All",
|
154 |
+
label="Filter by Device",
|
155 |
+
elem_id="device-filter",
|
156 |
+
multiselect=True # Enable multiple selection
|
157 |
+
)
|
158 |
+
|
159 |
+
whisper_table = gr.components.Dataframe(
|
160 |
+
value=whisper_df,
|
161 |
+
datatype=TYPES,
|
162 |
+
elem_id="whisper-table",
|
163 |
+
interactive=False,
|
164 |
+
visible=True,
|
165 |
+
)
|
166 |
|
167 |
+
def filter_whisper_table(backends, devices):
|
168 |
+
filtered_df = whisper_df.copy()
|
169 |
+
|
170 |
+
# Handle backend filtering
|
171 |
+
if backends and "All" not in backends:
|
172 |
+
filtered_df = filtered_df[filtered_df["Backend"].isin(backends)]
|
173 |
+
|
174 |
+
# Handle device filtering
|
175 |
+
if devices and "All" not in devices and "Device" in filtered_df.columns:
|
176 |
+
filtered_df = filtered_df[filtered_df["Device"].isin(devices)]
|
177 |
+
|
178 |
+
return filtered_df
|
179 |
+
|
180 |
+
backend_filter.change(
|
181 |
+
filter_whisper_table,
|
182 |
+
inputs=[backend_filter, device_filter],
|
183 |
+
outputs=whisper_table
|
184 |
+
)
|
185 |
+
device_filter.change(
|
186 |
+
filter_whisper_table,
|
187 |
+
inputs=[backend_filter, device_filter],
|
188 |
+
outputs=whisper_table
|
189 |
+
)
|
190 |
+
with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=2):
|
191 |
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
|
192 |
|
193 |
+
with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=3):
|
194 |
with gr.Column():
|
195 |
gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text")
|
196 |
with gr.Column():
|
constants.py
CHANGED
@@ -116,8 +116,9 @@ For more details on the individual datasets and how models are evaluated to give
|
|
116 |
|
117 |
LEADERBOARD_CSS = """
|
118 |
#leaderboard-table th .header-content {
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
123 |
"""
|
|
|
116 |
|
117 |
LEADERBOARD_CSS = """
|
118 |
#leaderboard-table th .header-content {
|
119 |
+
white-space: nowrap;
|
120 |
+
}
|
121 |
+
#whisper-backends-tab th .header-content {
|
122 |
+
white-space: nowrap;
|
123 |
+
}
|
124 |
"""
|
init.py
CHANGED
@@ -4,8 +4,10 @@ from pathlib import Path
|
|
4 |
from huggingface_hub import HfApi, Repository
|
5 |
|
6 |
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
|
7 |
-
QUEUE_REPO = os.environ.get("QUEUE_REPO",
|
8 |
-
|
|
|
|
|
9 |
|
10 |
hf_api = HfApi(
|
11 |
endpoint="https://huggingface.co",
|
@@ -29,6 +31,14 @@ def load_all_info_from_dataset_hub():
|
|
29 |
repo_type="dataset",
|
30 |
)
|
31 |
eval_queue_repo.git_pull()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Local directory where dataset repo is cloned + folder with eval requests
|
34 |
directory = QUEUE_PATH / EVAL_REQUESTS_PATH
|
@@ -38,10 +48,13 @@ def load_all_info_from_dataset_hub():
|
|
38 |
csv_results = get_csv_with_results(QUEUE_PATH)
|
39 |
if csv_results is None:
|
40 |
passed = False
|
|
|
|
|
|
|
41 |
if not passed:
|
42 |
raise ValueError("No Hugging Face token provided. Skipping evaluation requests and results.")
|
43 |
|
44 |
-
return eval_queue_repo, requested_models, csv_results
|
45 |
|
46 |
|
47 |
def upload_file(requested_model_name, path_or_fileobj):
|
|
|
4 |
from huggingface_hub import HfApi, Repository
|
5 |
|
6 |
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
|
7 |
+
QUEUE_REPO = os.environ.get("QUEUE_REPO", "hf-audio/leaderboard-evals")
|
8 |
+
QUEUE_REPO_WHISPER = os.environ.get("QUEUE_REPO_WHISPER", "Steveeeeeeen/whisper-leaderboard-evals")
|
9 |
+
QUEUE_PATH = os.environ.get("QUEUE_PATH", "results")
|
10 |
+
QUEUE_PATH_WHISPER = os.environ.get("QUEUE_PATH_WHISPER", "whisper-results")
|
11 |
|
12 |
hf_api = HfApi(
|
13 |
endpoint="https://huggingface.co",
|
|
|
31 |
repo_type="dataset",
|
32 |
)
|
33 |
eval_queue_repo.git_pull()
|
34 |
+
|
35 |
+
whisper_eval_queue_repo = Repository(
|
36 |
+
local_dir=QUEUE_PATH_WHISPER,
|
37 |
+
clone_from=QUEUE_REPO_WHISPER,
|
38 |
+
use_auth_token=TOKEN_HUB,
|
39 |
+
repo_type="dataset",
|
40 |
+
)
|
41 |
+
whisper_eval_queue_repo.git_pull()
|
42 |
|
43 |
# Local directory where dataset repo is cloned + folder with eval requests
|
44 |
directory = QUEUE_PATH / EVAL_REQUESTS_PATH
|
|
|
48 |
csv_results = get_csv_with_results(QUEUE_PATH)
|
49 |
if csv_results is None:
|
50 |
passed = False
|
51 |
+
whisper_csv_results = get_csv_with_results(QUEUE_PATH_WHISPER)
|
52 |
+
if whisper_csv_results is None:
|
53 |
+
passed = False
|
54 |
if not passed:
|
55 |
raise ValueError("No Hugging Face token provided. Skipping evaluation requests and results.")
|
56 |
|
57 |
+
return eval_queue_repo, requested_models, csv_results, whisper_eval_queue_repo, whisper_csv_results
|
58 |
|
59 |
|
60 |
def upload_file(requested_model_name, path_or_fileobj):
|