Spaces:
Runtime error
Runtime error
File size: 21,358 Bytes
800ffef 4644579 dd9c7ae 800ffef 4644579 07e0495 4644579 4f18cef 4644579 07e0495 500d7f4 07e0495 4644579 089e4be a833ae6 089e4be 07e0495 089e4be 4644579 d79b9b1 4644579 089e4be 4644579 4f18cef 4644579 4f18cef 4644579 1c4f5a9 4644579 bf7dff7 4644579 e563dec 4644579 4f18cef 4644579 31746c1 4644579 089e4be 07e0495 089e4be bf7dff7 089e4be 31746c1 4644579 1ed8d0b bf7dff7 4644579 5f6b497 07e0495 dd9c7ae 4644579 dd9c7ae 4644579 1c4f5a9 4644579 089e4be 4644579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import gradio as gr
import whisper
from datetime import datetime
from PIL import Image
import flag
import os
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
plt.switch_backend('Agg')
pd.options.display.max_columns = 25
pd.options.display.max_rows = 300
stable_diffusion = gr.Blocks.load(name="spaces/stabilityai/stable-diffusion")
code_generation=gr.Blocks.load(name="spaces/THUDM/CodeGeeX")
### ββββββββββββββββββββββββββββββββββββββββ
title="DataTeller"
### ββββββββββββββββββββββββββββββββββββββββ
whisper_model = whisper.load_model("small")
def get_images(prompt):
gallery_dir = stable_diffusion(prompt, fn_index=2)
return [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)]
def get_code(prompt):
examples_dir = code_generation(prompt, fn_index=0)
return [os.path.join(examples_dir, output) for output in os.listdir(examples_dir)]
def magic_whisper_to_sd(audio, guidance_scale, nb_iterations, seed):
whisper_results = translate(audio)
prompt = whisper_results[2]
images = get_images(prompt)
return whisper_results[0], whisper_results[1], whisper_results[2], images
def generate_code(audio):
whisper_results = translate(audio)
prompt = whisper_results[2]
code = get_code(prompt)
return code
def translate(audio):
print("""
β
Sending audio to Whisper ...
β
""")
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
print('DateTime String:', date_time_str)
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
_, probs = whisper_model.detect_language(mel)
transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
transcription = whisper.decode(whisper_model, mel, transcript_options)
translation = whisper.decode(whisper_model, mel, translate_options)
print("language spoken: " + transcription.language)
print("transcript: " + transcription.text)
print("βββββββββββββββββββββββββββββββββββββββββββ")
print("translated: " + translation.text)
if transcription.language == "en":
tr_flag = flag.flag('GB')
else:
tr_flag = flag.flag(transcription.language)
return tr_flag, transcription.text, translation.text
### ββββββββββββββββββββββββββββββββββββββββ
css = """
.container {
max-width: 880px;
margin: auto;
padding-top: 1.5rem;
}
a {
text-decoration: underline;
}
h1 {
font-weight: 900;
margin-bottom: 7px;
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
#w2sd_container{
margin-top: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.tabitem {
border-bottom-left-radius: 10px;
border-bottom-right-radius: 10px;
}
#record_tab, #upload_tab {
font-size: 1.2em;
}
#record_btn{
}
#record_btn > div > button > span {
width: 2.375rem;
height: 2.375rem;
}
#record_btn > div > button > span > span {
width: 2.375rem;
height: 2.375rem;
}
audio {
margin-bottom: 10px;
}
div#record_btn > .mt-6{
margin-top: 0!important;
}
div#record_btn > .mt-6 button {
font-size: 2em;
width: 100%;
padding: 20px;
height: 160px;
}
div#upload_area {
height: 11.1rem;
}
div#upload_area > div.w-full > div {
min-height: 9rem;
}
#check_btn_1, #check_btn_2{
color: #fff;
--tw-gradient-from: #4caf50;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #4caf50;
border-color: #8bc34a;
}
#magic_btn_1, #magic_btn_2{
color: #fff;
--tw-gradient-from: #f44336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #ff9800;
border-color: #ff9800;
}
input::-webkit-inner-spin-button, input::-webkit-outer-spin-button {
-webkit-appearance: none;
}
input[type=number] {
-moz-appearance: textfield;
}
input[type=range] {
-webkit-appearance: none;
cursor: pointer;
height: 1px;
background: currentColor;
}
input[type=range]::-webkit-slider-thumb {
-webkit-appearance: none;
width: 0.5em;
height: 1.2em;
border-radius: 10px;
background: currentColor;
}
input[type=range]::-moz-range-thumb{
width: 0.5em;
height: 1.2em;
border-radius: 10px;
background: currentColor;
}
div#spoken_lang textarea {
font-size: 4em;
line-height: 1em;
text-align: center;
}
div#transcripted {
flex: 4;
}
div#translated textarea {
font-size: 1.5em;
line-height: 1.25em;
}
#sd_settings {
margin-bottom: 20px;
}
#diffuse_btn {
color: #fff;
font-size: 1em;
margin-bottom: 20px;
--tw-gradient-from: #4caf50;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #4caf50;
border-color: #8bc34a;
}
#codegen_btn {
color: #fff;
font-size: 1em;
margin-bottom: 20px;
--tw-gradient-from: #4caf50;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #4caf50;
border-color: #8bc34a;
}
#notice {
padding: 20px 14px 10px;
display: flex;
align-content: space-evenly;
gap: 20px;
line-height: 1em;
font-size: .8em;
border: 1px solid #374151;
border-radius: 10px;
}
#about {
padding: 20px;
}
#notice > div {
flex: 1;
}
"""
### ββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML('''
<h1>
DataTeller
</h1>
<p style='text-align: center;'>
Generate data visualizations by speaking in your native language ! Try it in Romanian π
</p>
<p style='text-align: center;'>
This demo is wired to the official SD Space and using the Whisperer model
</p>
''')
gr.Markdown(
"""
## 1. Record audio or Upload an audio file:
"""
)
with gr.Tab(label="Record audio input", elem_id="record_tab"):
with gr.Column():
record_input = gr.Audio(
source="microphone",
type="filepath",
show_label=False,
elem_id="record_btn"
)
with gr.Row():
audio_r_translate = gr.Button("Check Whisper first ? π", elem_id="check_btn_1")
audio_r_direct_sd = gr.Button("Magic Whisper βΊ SD right now!", elem_id="magic_btn_1")
with gr.Tab(label="Upload audio input", elem_id="upload_tab"):
with gr.Column():
upload_input = gr.Audio(
source="upload",
type="filepath",
show_label=False,
elem_id="upload_area"
)
with gr.Row():
audio_u_translate = gr.Button("Check Whisper first ? π", elem_id="check_btn_2")
# audio_u_direct_sd = gr.Button("Magic Whisper βΊ SD right now!", elem_id="magic_btn_2")
with gr.Accordion(label="Stable Diffusion Settings", elem_id="sd_settings", visible=False):
with gr.Row():
guidance_scale = gr.Slider(2, 15, value = 7, label = 'Guidance Scale')
nb_iterations = gr.Slider(10, 50, value = 25, step = 1, label = 'Steps')
seed = gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True)
gr.Markdown(
"""
## 2. Check Whisper output, correct it if necessary:
"""
)
with gr.Row():
transcripted_output = gr.Textbox(
label="Transcription in your detected spoken language",
lines=3,
elem_id="transcripted"
)
language_detected_output = gr.Textbox(label="Native language", elem_id="spoken_lang",lines=3)
with gr.Column():
translated_output = gr.Textbox(
label="Transcript translated in English by Whisper",
lines=4,
elem_id="translated"
)
with gr.Row():
clear_btn = gr.Button(value="Clear")
diffuse_btn = gr.Button(value="OK, Diffuse this prompt !", elem_id="diffuse_btn")
codegen_btn = gr.Button(value="Generate code from this prompt!", elem_id="codegen_btn")
clear_btn.click(fn=lambda value: gr.update(value=""), inputs=clear_btn, outputs=translated_output)
gr.Markdown(
"""
## 3. Use whisper results for code generation
"""
)
with gr.Column():
with gr.Row():
# clear_btn = gr.Button(value="Clear")
# diffuse_btn = gr.Button(value="Diffuse this prompt!", elem_id="diffuse_btn")
# codegen_btn = gr.Button(value="Generate code from this prompt!", elem_id="codegen_btn")
code = gr.Textbox(
label="Code generated",
lines=4,
elem_id="translated"
)
# clear_btn.click(fn=lambda value: gr.update(value=""), inputs=clear_btn, outputs=translated_output)
# gr.Markdown("""
# ## 4. Plot the generated code βοΈ
# Inference time is about ~20-30 seconds, when it's your turn π¬
# """
# )
# with gr.Column():
# with gr.Row():
# def outbreak(plot_type):
# df = pd.read_csv('emp_experience_data.csv')
# data_encoded = df.copy(deep=True)
# categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation',
# 'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
# label_encoding = LabelEncoder()
# for col in categorical_column:
# data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
# if plot_type == "Find Data Correlation":
# fig = plt.figure()
# data_correlation = data_encoded.corr()
# sns.heatmap(data_correlation, xticklabels = data_correlation.columns, yticklabels = data_correlation.columns)
# return fig
# if plot_type == "Filter Correlation Data":
# fig = plt.figure()
# filtered_df = df[['EmployeeExperience', 'EmployeeFeedbackSentiments', 'Age', 'SalarySatisfaction', 'BusinessTravel', 'HealthBenefitsSatisfaction']]
# correlation_filter_data = filtered_df.corr()
# sns.heatmap(correlation_filter_data, xticklabels = filtered_df.columns, yticklabels = filtered_df.columns)
# return fig
# if plot_type == "Age vs Attrition":
# fig = plt.figure()
# plt.hist(data_encoded['Age'], bins=np.arange(0,80,10), alpha=0.8, rwidth=0.9, color='red')
# plt.xlabel("Age")
# plt.ylabel("Count")
# plt.title("Age vs Attrition")
# return fig
# if plot_type == "Business Travel vs Attrition":
# fig = plt.figure()
# ax = sns.countplot(x="BusinessTravel", hue="Attrition", data=data_encoded)
# for p in ax.patches:
# ax.annotate('{}'.format(p.get_height()), (p.get_x(), p.get_height()+1))
# return fig
# if plot_type == "Employee Experience vs Attrition":
# fig = plt.figure()
# ax = sns.countplot(x="EmployeeExperience", hue="Attrition", data=data_encoded)
# for p in ax.patches:
# ax.annotate('{}'.format(p.get_height()), (p.get_x(), p.get_height()+1))
# return figure
# inputs = [
# gr.Dropdown(["Find Data Correlation", "Filter Correlation Data", "Business Travel vs Attrition", "Employee Experience vs Attrition", "Age vs Attrition",], label="Data Correlation and Visualization")
# ]
# outputs = gr.Plot()
# demo2 = gr.Interface(
# fn = outbreak,
# inputs = inputs,
# outputs = outputs,
# title="Employee-Experience: Data Correlation and Pattern Visualization",
# allow_flagging=False
# )
gr.Markdown("""
## 5. Wait for Stable Diffusion Results βοΈ
Inference time is about ~20-30 seconds, when it's your turn π¬
"""
)
sd_output = gr.Gallery().style(grid=2, height="auto")
gr.Markdown("""
### π About the models
<p style='font-size: 1em;line-height: 1.5em;'>
<strong>Whisper</strong> is a general-purpose speech recognition model.<br /><br />
It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. <br />
β
</p>
<p style='font-size: 1em;line-height: 1.5em;'>
<strong>Stable Diffusion</strong> is a state of the art text-to-image model that generates images from text.
</p>
<div id="notice">
<div>
LICENSE
<p style='font-size: 0.8em;'>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank">CreativeML Open RAIL-M</a> license.</p>
<p style='font-size: 0.8em;'>
The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license.</p>
<p style='font-size: 0.8em;'>
The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups.</p>
<p style='font-size: 0.8em;'>
For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" target="_blank">read the license</a>.
</p>
</div>
<div>
Biases and content acknowledgment
<p style='font-size: 0.8em;'>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence.</p>
<p style='font-size: 0.8em;'>
The model was trained on the <a href="https://laion.ai/blog/laion-5b/" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes.</p>
<p style='font-size: 0.8em;'> You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" target="_blank">model card</a>.
</p>
</div>
</div>
""", elem_id="about")
audio_r_translate.click(translate,
inputs = record_input,
outputs = [
language_detected_output,
transcripted_output,
translated_output
])
audio_u_translate.click(translate,
inputs = upload_input,
outputs = [
language_detected_output,
transcripted_output,
translated_output
])
audio_r_direct_sd.click(magic_whisper_to_sd,
inputs = [
record_input,
guidance_scale,
nb_iterations,
seed
],
outputs = [
language_detected_output,
transcripted_output,
translated_output,
sd_output
])
# audio_u_direct_sd.click(magic_whisper_to_sd,
# inputs = [
# upload_input,
# guidance_scale,
# nb_iterations,
# seed
# ],
# outputs = [
# language_detected_output,
# transcripted_output,
# translated_output,
# sd_output
# ])
diffuse_btn.click(get_images,
inputs = [
translated_output
],
outputs = sd_output
)
codegen_btn.click(generate_code,
inputs = [
translated_output
],
outputs = code
)
gr.HTML('''
<div class="footer">
<p>Whisper by <a href="https://github.com/openai/whisper" target="_blank">OpenAI</a> - Stable Diffusion by <a href="https://huggingface.co/CompVis" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" target="_blank">Stability AI</a>
</p>
</div>
''')
if __name__ == "__main__":
demo.launch() |