Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
import base64 | |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
# Set the title and text color to dark green | |
st.markdown('<h1 style="color:darkgreen;">R3SELL</h1>', unsafe_allow_html=True) | |
# Create a file input option for uploading an image | |
file_name = st.file_uploader("Upload an image file (JPEG, PNG, etc.)") | |
# Create a camera input widget to capture images from the webcam | |
image = st.camera_input("Capture an image from your webcam") | |
# Add a text bar to add a title | |
image_title = st.text_input("Image Title", value="Specificity is nice!") | |
# Add a text bar to add a description | |
image_description = st.text_input("Image Description", value="(Optional)") | |
if file_name is not None or image is not None: | |
# Check if the image is a webcam image | |
if file_name == 'webcam_image.jpg': | |
# Use the Base64 encoded image | |
image = Image.open('data:image/jpeg;base64,' + img_encoded) | |
else: | |
# Open the uploaded image | |
image = Image.open(file_name) | |
# Pass the captured image to the pipeline function | |
predictions = pipeline(image) | |
col1, col2 = st.columns(2) | |
col1.image(image, use_column_width=True) | |
col2.header("Probabilities") | |
for p in predictions: | |
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") | |