File size: 13,879 Bytes
ac6ff10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import numpy as np
import cv2
import os
import random

#My library:
from opencv_transform.annotation import BodyPart

###
#
#	maskdet_to_maskfin 
#	
#	steps:
#		1. Extract annotation
#			1.a: Filter by color
#			1.b: Find ellipses
#			1.c: Filter out ellipses by max size, and max total numbers
#			1.d: Detect Problems
#			1.e: Resolve the problems, or discard the transformation
#		2. With the body list, draw maskfin, using maskref
#
###

# create_maskfin ==============================================================================
# return:
#	(<Boolean> True/False), depending on the transformation process
def create_maskfin(maskref, maskdet):
	
	#Create a total green image, in which draw details ellipses
	details = np.zeros((512,512,3), np.uint8)
	details[:,:,:] = (0,255,0)      # (B, G, R)

	#Extract body part features:
	bodypart_list = extractAnnotations(maskdet);

	#Check if the list is not empty:
	if bodypart_list:
		
		#Draw body part in details image:
		for obj in bodypart_list:

			if obj.w < obj.h:
				aMax = int(obj.h/2) #asse maggiore
				aMin = int(obj.w/2) #asse minore
				angle = 0 #angle
			else:
				aMax = int(obj.w/2)
				aMin = int(obj.h/2)
				angle = 90

			x = int(obj.x)
			y = int(obj.y)

			#Draw ellipse
			if obj.name == "tit":
				cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(0,205,0),-1) #(0,0,0,50)
			elif obj.name == "aur":
				cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(0,0,255),-1) #red
			elif obj.name == "nip":
				cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,255,255),-1) #white
			elif obj.name == "belly":
				cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,0,255),-1) #purple
			elif obj.name == "vag":
				cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,0,0),-1) #blue
			elif obj.name == "hair":
				xmin = x - int(obj.w/2)
				ymin = y - int(obj.h/2)
				xmax = x + int(obj.w/2)
				ymax = y + int(obj.h/2)
				cv2.rectangle(details,(xmin,ymin),(xmax,ymax),(100,100,100),-1)

		#Define the green color filter
		f1 = np.asarray([0, 250, 0])   # green color filter
		f2 = np.asarray([10, 255, 10])
		
		#From maskref, extrapolate only the green mask		
		green_mask = cv2.bitwise_not(cv2.inRange(maskref, f1, f2)) #green is 0

		# Create an inverted mask
		green_mask_inv = cv2.bitwise_not(green_mask)

		# Cut maskref and detail image, using the green_mask & green_mask_inv
		res1 = cv2.bitwise_and(maskref, maskref, mask = green_mask)
		res2 = cv2.bitwise_and(details, details, mask = green_mask_inv)

		# Compone:
		maskfin = cv2.add(res1, res2)
		return maskfin
	
# extractAnnotations ==============================================================================
# input parameter:
# 	(<string> maskdet_img): relative path of the single maskdet image (es: testimg1/maskdet/1.png)
# return:
#	(<BodyPart []> bodypart_list) - for failure/error, return an empty list []
def extractAnnotations(maskdet):

	#Load the image
	#image = cv2.imread(maskdet_img)

	#Find body part
	tits_list = findBodyPart(maskdet, "tit")
	aur_list = findBodyPart(maskdet, "aur")
	vag_list = findBodyPart(maskdet, "vag")
	belly_list = findBodyPart(maskdet, "belly")

	#Filter out parts basing on dimension (area and aspect ratio):
	aur_list = filterDimParts(aur_list, 100, 1000, 0.5, 3);
	tits_list = filterDimParts(tits_list, 1000, 60000, 0.2, 3);
	vag_list = filterDimParts(vag_list, 10, 1000, 0.2, 3);
	belly_list = filterDimParts(belly_list, 10, 1000, 0.2, 3);

	#Filter couple (if parts are > 2, choose only 2)
	aur_list = filterCouple(aur_list);
	tits_list = filterCouple(tits_list);

	#Detect a missing problem:
	missing_problem = detectTitAurMissingProblem(tits_list, aur_list) #return a Number (code of the problem)

	#Check if problem is SOLVEABLE:
	if (missing_problem in [3,6,7,8]):
		resolveTitAurMissingProblems(tits_list, aur_list, missing_problem)
	
	#Infer the nips:
	nip_list = inferNip(aur_list)

	#Infer the hair:
	hair_list = inferHair(vag_list)

	#Return a combined list:
	return tits_list + aur_list + nip_list + vag_list + hair_list + belly_list

# findBodyPart ==============================================================================
# input parameters:
# 	(<RGB>image, <string>part_name)
# return
#	(<BodyPart[]>list)
def findBodyPart(image, part_name):

	bodypart_list = [] #empty BodyPart list

	#Get the correct color filter:
	if part_name == "tit":
		#Use combined color filter 
		f1 = np.asarray([0, 0, 0])   # tit color filter
		f2 = np.asarray([10, 10, 10])
		f3 = np.asarray([0, 0, 250])   # aur color filter
		f4 = np.asarray([0, 0, 255])
		color_mask1 = cv2.inRange(image, f1, f2)
		color_mask2 = cv2.inRange(image, f3, f4)
		color_mask = cv2.bitwise_or(color_mask1, color_mask2) #combine
	
	elif part_name == "aur":
		f1 = np.asarray([0, 0, 250])   # aur color filter
		f2 = np.asarray([0, 0, 255])
		color_mask = cv2.inRange(image, f1, f2)
	
	elif part_name == "vag":
		f1 = np.asarray([250, 0, 0])   # vag filter
		f2 = np.asarray([255, 0, 0])
		color_mask = cv2.inRange(image, f1, f2)

	elif part_name == "belly":
		f1 = np.asarray([250, 0, 250])   # belly filter
		f2 = np.asarray([255, 0, 255])
		color_mask = cv2.inRange(image, f1, f2)

	#find contours:
	contours, hierarchy = cv2.findContours(color_mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

	#for every contour:
	for cnt in contours:

		if len(cnt)>5: #at least 5 points to fit ellipse

			#(x, y), (MA, ma), angle = cv2.fitEllipse(cnt)
			ellipse = cv2.fitEllipse(cnt)

			#Fit Result:
			x = ellipse[0][0] #center x
			y = ellipse[0][1] #center y
			angle = ellipse[2] #angle
			aMin = ellipse[1][0]; #asse minore
			aMax = ellipse[1][1]; #asse maggiore

			#Detect direction:
			if angle == 0:
				h = aMax
				w = aMin
			else:
				h = aMin
				w = aMax
			
			#Normalize the belly size:
			if part_name == "belly":
				if w<15:
					w *= 2
				if h<15:
					h *= 2

			#Normalize the vag size:
			if part_name == "vag":
				if w<15:
					w *= 2
				if h<15:
					h *= 2

			#Calculate Bounding Box:
			xmin = int(x - (w/2))
			xmax = int(x + (w/2))
			ymin = int(y - (h/2))
			ymax = int(y + (h/2))

			bodypart_list.append(BodyPart(part_name, xmin, ymin, xmax, ymax, x, y, w, h ))

	return bodypart_list

# filterDimParts ==============================================================================
# input parameters:
# 	(<BodyPart[]>list, <num> minimum area of part,  <num> max area, <num> min aspect ratio, <num> max aspect ratio)
def filterDimParts(bp_list, min_area, max_area, min_ar, max_ar):

	b_filt = []

	for obj in bp_list:

		a = obj.w*obj.h #Object AREA
		
		if ((a > min_area)and(a < max_area)):

			ar = obj.w/obj.h #Object ASPECT RATIO

			if ((ar>min_ar)and(ar<max_ar)):

				b_filt.append(obj)

	return b_filt

# filterCouple ==============================================================================
# input parameters:
# 	(<BodyPart[]>list)
def filterCouple(bp_list):

	#Remove exceed parts
	if (len(bp_list)>2):

		#trovare coppia (a,b) che minimizza bp_list[a].y-bp_list[b].y
		min_a = 0
		min_b = 1
		min_diff = abs(bp_list[min_a].y-bp_list[min_b].y)
		
		for a in range(0,len(bp_list)):
			for b in range(0,len(bp_list)):
				#TODO: avoid repetition (1,0) (0,1)
				if a != b:
					diff = abs(bp_list[a].y-bp_list[b].y)
					if diff<min_diff:
						min_diff = diff
						min_a = a
						min_b = b
		b_filt = []

		b_filt.append(bp_list[min_a])
		b_filt.append(bp_list[min_b])

		return b_filt
	else:
		#No change
		return bp_list



# detectTitAurMissingProblem ==============================================================================
# input parameters:
# 	(<BodyPart[]> tits list, <BodyPart[]> aur list)
# return
#	(<num> problem code)
#   TIT  |  AUR  |  code |  SOLVE?  |
#    0   |   0   |   1   |    NO    |
#    0   |   1   |   2   |    NO    |
#    0   |   2   |   3   |    YES   |
#    1   |   0   |   4   |    NO    |
#    1   |   1   |   5   |    NO    |
#    1   |   2   |   6   |    YES   |
#    2   |   0   |   7   |    YES   |
#    2   |   1   |   8   |    YES   |
def detectTitAurMissingProblem(tits_list, aur_list):

	t_len = len(tits_list)
	a_len = len(aur_list)

	if (t_len == 0):
		if (a_len == 0):
			return 1
		elif (a_len == 1):
			return 2
		elif (a_len == 2):
			return 3
		else:
			return -1
	elif (t_len == 1):
		if (a_len == 0):
			return 4
		elif (a_len == 1):
			return 5
		elif (a_len == 2):
			return 6
		else:
			return -1
	elif (t_len == 2):
		if (a_len == 0):
			return 7
		elif (a_len == 1):
			return 8
		else:
			return -1
	else:
		return -1

# resolveTitAurMissingProblems ==============================================================================
# input parameters:
# 	(<BodyPart[]> tits list, <BodyPart[]> aur list, problem code)
# return
#	none
def resolveTitAurMissingProblems(tits_list, aur_list, problem_code):

	if problem_code == 3:

		random_tit_factor = random.randint(2, 5) #TOTEST

		#Add the first tit:
		new_w = aur_list[0].w * random_tit_factor #TOTEST
		new_x = aur_list[0].x
		new_y = aur_list[0].y

		xmin = int(new_x - (new_w/2))
		xmax = int(new_x + (new_w/2))
		ymin = int(new_y - (new_w/2))
		ymax = int(new_y + (new_w/2))

		tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))

		#Add the second tit:
		new_w = aur_list[1].w * random_tit_factor #TOTEST
		new_x = aur_list[1].x
		new_y = aur_list[1].y

		xmin = int(new_x - (new_w/2))
		xmax = int(new_x + (new_w/2))
		ymin = int(new_y - (new_w/2))
		ymax = int(new_y + (new_w/2))

		tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))

	elif problem_code == 6:

		#Find wich aur is full:
		d1 = abs(tits_list[0].x - aur_list[0].x)
		d2 = abs(tits_list[0].x - aur_list[1].x)

		if d1 > d2:
			#aur[0] is empty
			new_x = aur_list[0].x
			new_y = aur_list[0].y
		else:
			#aur[1] is empty
			new_x = aur_list[1].x
			new_y = aur_list[1].y

		#Calculate Bounding Box:
		xmin = int(new_x - (tits_list[0].w/2))
		xmax = int(new_x + (tits_list[0].w/2))
		ymin = int(new_y - (tits_list[0].w/2))
		ymax = int(new_y + (tits_list[0].w/2))

		tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, tits_list[0].w, tits_list[0].w ))

	elif problem_code == 7:

		#Add the first aur:
		new_w = tits_list[0].w * random.uniform(0.03, 0.1) #TOTEST
		new_x = tits_list[0].x
		new_y = tits_list[0].y

		xmin = int(new_x - (new_w/2))
		xmax = int(new_x + (new_w/2))
		ymin = int(new_y - (new_w/2))
		ymax = int(new_y + (new_w/2))

		aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))

		#Add the second aur:
		new_w = tits_list[1].w * random.uniform(0.03, 0.1) #TOTEST
		new_x = tits_list[1].x
		new_y = tits_list[1].y

		xmin = int(new_x - (new_w/2))
		xmax = int(new_x + (new_w/2))
		ymin = int(new_y - (new_w/2))
		ymax = int(new_y + (new_w/2))
		
		aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))

	elif problem_code == 8:

		#Find wich tit is full:
		d1 = abs(aur_list[0].x - tits_list[0].x)
		d2 = abs(aur_list[0].x - tits_list[1].x)

		if d1 > d2:
			#tit[0] is empty
			new_x = tits_list[0].x
			new_y = tits_list[0].y
		else:
			#tit[1] is empty
			new_x = tits_list[1].x
			new_y = tits_list[1].y

		#Calculate Bounding Box:
		xmin = int(new_x - (aur_list[0].w/2))
		xmax = int(new_x + (aur_list[0].w/2))
		ymin = int(new_y - (aur_list[0].w/2))
		ymax = int(new_y + (aur_list[0].w/2))
		aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, aur_list[0].w, aur_list[0].w ))

# detectTitAurPositionProblem ==============================================================================
# input parameters:
# 	(<BodyPart[]> tits list, <BodyPart[]> aur list)
# return
#	(<Boolean> True/False)
def detectTitAurPositionProblem(tits_list, aur_list):

	diffTitsX = abs(tits_list[0].x - tits_list[1].x)
	if diffTitsX < 40:
		print("diffTitsX")
		#Tits too narrow (orizontally)
		return True

	diffTitsY = abs(tits_list[0].y - tits_list[1].y)
	if diffTitsY > 120:
		#Tits too distanced (vertically)
		print("diffTitsY")
		return True

	diffTitsW = abs(tits_list[0].w - tits_list[1].w)
	if ((diffTitsW < 0.1)or(diffTitsW>60)):
		print("diffTitsW")
		#Tits too equals, or too different (width)
		return True

	#Check if body position is too low (face not covered by watermark)
	if aur_list[0].y > 350: #tits too low
		#Calculate the ratio between y and aurs distance
		rapp = aur_list[0].y/(abs(aur_list[0].x - aur_list[1].x))
		if rapp > 2.8:
			print("aurDown")
			return True

	return False

# inferNip ==============================================================================
# input parameters:
# 	(<BodyPart[]> aur list)
# return
#	(<BodyPart[]> nip list)
def inferNip(aur_list):
	nip_list = []

	for aur in aur_list:

		#Nip rules:
		# - circle (w == h)
		# - min dim: 5
		# - bigger if aur is bigger
		nip_dim = int(5 + aur.w*random.uniform(0.03, 0.09))

		#center:
		x = aur.x
		y = aur.y

		#Calculate Bounding Box:
		xmin = int(x - (nip_dim/2))
		xmax = int(x + (nip_dim/2))
		ymin = int(y - (nip_dim/2))
		ymax = int(y + (nip_dim/2))

		nip_list.append(BodyPart("nip", xmin, ymin, xmax, ymax, x, y, nip_dim, nip_dim ))

	return nip_list

# inferHair (TOTEST) ==============================================================================
# input parameters:
# 	(<BodyPart[]> vag list)
# return
#	(<BodyPart[]> hair list)
def inferHair(vag_list):
	hair_list = []

	#70% of chanche to add hair
	if random.uniform(0.0, 1.0) > 0.3:

		for vag in vag_list:

			#Hair rules:
			hair_w = vag.w*random.uniform(0.4, 1.5)
			hair_h = vag.h*random.uniform(0.4, 1.5) 

			#center:
			x = vag.x
			y = vag.y - (hair_h/2) - (vag.h/2)

			#Calculate Bounding Box:
			xmin = int(x - (hair_w/2))
			xmax = int(x + (hair_w/2))
			ymin = int(y - (hair_h/2))
			ymax = int(y + (hair_h/2))

			hair_list.append(BodyPart("hair", xmin, ymin, xmax, ymax, x, y, hair_w, hair_h ))

	return hair_list