File size: 6,939 Bytes
ac6ff10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from run import process
import time
import subprocess
import os
import argparse
import cv2
import sys
from PIL import Image
import torch
import gradio as gr

TESTdevice = "cpu"
index = 1

def mainTest(inputpath, outpath):
    watermark = deep_nude_process(inputpath)
    watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
    return watermark1

def deep_nude_process(inputpath):
    dress = cv2.imread(inputpath)
    h = dress.shape[0]
    w = dress.shape[1]
    dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
    watermark = process(dress)
    watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
    return watermark

def inference(img):
    global index
    bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
    inputpath = f"input_{index}.jpg"
    cv2.imwrite(inputpath, bgra)

    outputpath = f"out_{index}.jpg"
    index += 1
    print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
    output = mainTest(inputpath, outputpath)
    print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
    return output

def load_image_from_file(file_path, new_height=None):
    """
    Load an image from a file and optionally resize it while maintaining the aspect ratio.

    Args:
        file_path (str): The path to the image file.
        new_height (int, optional): The new height for the image. If None, the image is not resized.

    Returns:
        Image: The loaded (and optionally resized) image.
    """
    try:
        img = Image.open(file_path)
        
        if (new_height is not None):
            # Calculate new width to maintain aspect ratio
            aspect_ratio = img.width / img.height
            new_width = int(new_height * aspect_ratio)
            
            # Resize the image
            img = img.resize((new_width, new_height), Image.LANCZOS)
        
        return img
    except FileNotFoundError:
        print(f"File not found: {file_path}")
        return None
    except Image.UnidentifiedImageError:
        print(f"Cannot identify image file: {file_path}")
        return None
    except Exception as e:
        print(f"Error loading image from file: {e}")
        return None

title = "Undress AI"
description = "β›” Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 30 seconds for a picture. πŸ”ž Do not upload personal photos πŸ”ž There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to at least see the outline of a human body β›”"

examples = [
    [load_image_from_file('example9.webp')],
    [load_image_from_file('example2.png')],
    [load_image_from_file('example1.png')],
    [load_image_from_file('example5.webp')],
    [load_image_from_file('example6.webp')],
    [load_image_from_file('example8.webp')],
]

js='''
<script>
window.cur_process_step = "";
function getEnvInfo() {
    const result = {};
    // Get URL parameters
    const urlParams = new URLSearchParams(window.location.search);
    for (const [key, value] of urlParams) {
        result[key] = value;
    }
    // Get current domain and convert to lowercase
    result["__domain"] = window.location.hostname.toLowerCase();
    // Get iframe parent domain, if any, and convert to lowercase
    try {
        if (window.self !== window.top) {
            result["__iframe_domain"] = document.referrer 
                ? new URL(document.referrer).hostname.toLowerCase()
                : "unable to get iframe parent domain";
        }else{
            result["__iframe_domain"] = "";
        }
    } catch (e) {
        result["__iframe_domain"] = "unable to access iframe parent domain";
    }
    return result;
}
function isValidEnv(){
    envInfo = getEnvInfo();
    return envInfo["e"] == "1" || 
        envInfo["__domain"].indexOf("nsfwais.io") != -1 || 
        envInfo["__iframe_domain"].indexOf("nsfwais.io") != -1 ||
        envInfo["__domain"].indexOf("127.0.0.1") != -1 || 
        envInfo["__iframe_domain"].indexOf("127.0.0.1") != -1;
}
window.postMessageToParent = function(img, event, source, value) {
    // Construct the message object with the provided parameters
    console.log("post start",event, source, value);
    const message = {
        event: event,
        source: source,
        value: value
    };
    
    // Post the message to the parent window
    window.parent.postMessage(message, '*');
    console.log("post finish");
    window.cur_process_step = "process";
    return img;
}
function uploadImage(image, event, source, value) {
    // Ensure we're in an iframe
    if (window.cur_process_step != "process"){
        return;
    }
    window.cur_process_step = "";
    console.log("uploadImage", image ? image.url : null, event, source, value);
    // Get the first image from the gallery (assuming it's an array)
    let imageUrl = image ? image.url : null;
    if (window.self !== window.top) {
        // Post the message to the parent window
        // Prepare the data to send
        let data = {
            event: event,
            source: source,
            value: imageUrl
        };
        window.parent.postMessage(data, '*');
    } else if (isValidEnv()){
        try{
            sendCustomEventToDataLayer({},event,source,{"image":imageUrl})
        } catch (error) {
            console.error("Error in sendCustomEventToDataLayer:", error);
        }
    }else{
        console.log("Not in an iframe, can't post to parent");
    }
    return;
}
window.onDemoLoad = function(x){
    let envInfo = getEnvInfo();
    console.log(envInfo);
    if (isValidEnv()){
        var element = document.getElementById("pitch_desc_html_code");
        if (element) {
            element.parentNode.removeChild(element);
        }
    }
    return "";
}
</script>
'''

with gr.Blocks(head=js, theme="Nymbo/Alyx_Theme") as demo:
    width=240
    height=340

    with gr.Row(equal_height=False):
        with gr.Column(min_width=240):  # Adjust scale for proper sizing
            image_input = gr.Image(type="numpy", label="", height=height)
            gr.Examples(examples=examples, inputs=image_input, examples_per_page=10, elem_id="example_img")
            process_button = gr.Button("Run", size="sm")

    def update_status(img):
        processed_img = inference(img)
        return processed_img

    image_input.change(fn=lambda x: x, inputs=[image_input], outputs=[gr.State([])], js='''(img) => window.uploadImage(img, "process_finished", "demo_hf_deepnude_gan_card", "")''')
    process_button.click(update_status, inputs=image_input, outputs=image_input, js='''(i) => window.postMessageToParent(i, "process_started", "demo_hf_deepnude_gan_card", "click_nude")''')
    demo.load(fn=lambda x: x, inputs=[gr.State([])], outputs=[gr.State([])], js='''(x) => window.onDemoLoad(x)''')
demo.queue(max_size=10)
demo.launch()