Spaces:
Runtime error
Runtime error
File size: 5,694 Bytes
9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6df2588 9f854bb 6df2588 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb c6f82b0 9f854bb c6f82b0 6a666dd 9f854bb 298fb30 9f854bb e2e0a35 9f854bb c6f82b0 9f854bb 6a666dd 9f854bb 6a666dd 9f854bb 6a666dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
import json
import argparse
import traceback
import logging
from datetime import datetime
import gradio as gr
import numpy as np
import librosa
import torch
from fairseq import checkpoint_utils
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from vc_infer_pipeline import VC
from config import is_half, device
logging.getLogger("numba").setLevel(logging.WARNING)
def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index, file_big_npy):
def vc_fn(vc_transpose, vc_f0method, vc_index_ratio):
try:
# Get the recorded audio from the microphone
audio, sr = vc_microphone.record(num_frames=16000) # Adjust the sample rate if needed
# Your existing processing logic for audio
times = [0, 0, 0]
f0_up_key = int(vc_transpose)
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
times,
f0_up_key,
vc_f0method,
file_index,
file_big_npy,
vc_index_ratio,
if_f0,
)
print(
f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
)
return "Success", (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
return vc_fn
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(device)
if is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--api', action="store_true", default=False)
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--files", action="store_true", default=False, help="load audio from path")
args, unknown = parser.parse_known_args()
load_hubert()
models = []
with open("weights/model_info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for name, info in models_info.items():
if not info['enable']:
continue
title = info['title']
cover = f"weights/{name}/{info['cover']}"
index = f"weights/{name}/{info['feature_retrieval_library']}"
npy = f"weights/{name}/{info['feature_file']}"
cpt = torch.load(f"weights/{name}/{name}.pth", map_location="cpu")
tgt_sr = cpt["config"][-1]
if_f0 = cpt.get("f0", 1)
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(device)
if is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, device, is_half)
models.append((name, title, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index, npy)))
with gr.Blocks() as app:
gr.Markdown(
"# <center> RVC generator\n"
"## <center> The input audio should be clean and pure voice without background music.\n"
"[](https://www.buymeacoffee.com/spark808)\n\n"
)
with gr.Tabs():
for (name, title, cover, vc_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<div>{title}</div>\n' +
(f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "") +
'</div>'
)
with gr.Row():
with gr.Column():
# Use microphone instead of file upload
vc_microphone = gr.Microphone(label="Record your voice")
vc_transpose = gr.Number(label="Transpose", value=0)
vc_f0method = gr.Radio(
label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies",
choices=["pm", "harvest"],
value="harvest",
interactive=True,
)
vc_index_ratio = gr.Slider(
minimum=0,
maximum=1,
label="Retrieval feature ratio",
value=0.6,
interactive=True,
)
vc_submit = gr.Button("Generate", variant="primary")
with gr.Column():
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [vc_transpose, vc_f0method, vc_index_ratio], [vc_output1, vc_output2])
app.queue(concurrency_count=1, max_size=20, api_open=args.api).launch(share=args.share)
|