File size: 22,303 Bytes
0d015bf
20cd47a
 
 
 
 
 
 
 
 
 
 
d8a6eb5
20cd47a
 
 
 
c3727de
7d6f952
b8b3af8
 
3845d1c
5b8f239
7e5f34c
 
 
8c41ef2
 
 
 
 
 
20cd47a
7eb654c
20cd47a
 
a42f5f3
20cd47a
 
7dac13b
da97815
20cd47a
 
 
383d8e5
20cd47a
 
 
 
4978fe4
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aba95f
a42f5f3
20cd47a
 
 
 
 
 
7eb654c
9fb8d6e
 
 
20cd47a
 
 
 
 
7d6f952
20cd47a
8c41ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20cd47a
 
8c41ef2
20cd47a
 
8c41ef2
 
 
 
 
 
 
 
 
 
 
 
7bc4297
 
8c41ef2
 
a42f5f3
8c41ef2
 
 
7bc4297
8c41ef2
 
 
7bc4297
8c41ef2
 
 
 
7bc4297
8c41ef2
 
7d6f952
7e5f34c
 
8c41ef2
 
 
20cd47a
 
 
 
 
 
 
 
 
 
 
537d818
20cd47a
c3866eb
c3727de
 
842cb96
33127dd
 
c3727de
33127dd
c3727de
 
 
d5f5c5c
c3866eb
842cb96
 
c3866eb
 
 
d5f5c5c
c3866eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20cd47a
a42f5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
20cd47a
8c41ef2
 
 
 
 
 
 
 
 
b2a7725
8c41ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de73589
8c41ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee40a9d
 
 
 
470dd9c
5b8f239
840ea2e
5b8f239
 
 
 
 
 
20cd47a
2dc6197
9fb8d6e
7eb654c
20cd47a
 
f6138ad
44dcd57
 
c3727de
4cacb05
c3727de
44dcd57
d480876
44dcd57
e603987
 
 
d480876
44dcd57
a42f5f3
af2fc52
44dcd57
 
d0efd99
 
44dcd57
 
 
95397b0
44dcd57
 
 
 
d5f5c5c
 
 
af2fc52
c3727de
c3866eb
f166248
d5f5c5c
5b8f239
464f03d
7bca006
 
842cb96
3b13078
 
5b8f239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3866eb
7989b7e
 
 
c3866eb
af2fc52
24326ff
44dcd57
 
24326ff
ee40a9d
 
8c41ef2
44dcd57
 
 
 
 
 
 
 
 
 
 
 
 
 
60da68b
 
 
 
 
 
 
 
cd9bf20
 
 
 
 
20cd47a
cd9bf20
f6c39fb
8d06dcf
cd9bf20
 
60da68b
9fb8d6e
 
 
 
 
 
 
 
 
 
 
 
124c929
9fb8d6e
 
 
 
 
 
cd9bf20
9fb8d6e
 
 
 
 
14c015d
ee40a9d
9fb8d6e
 
 
 
 
 
 
cd9bf20
 
 
9fb8d6e
 
 
 
 
 
cd9bf20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a42f5f3
cd9bf20
 
 
 
 
 
20cd47a
 
 
 
 
 
6764da3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
from flask import Flask, request, jsonify, send_from_directory
import torch
import shutil
import os
import sys
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
import tempfile
from openai import OpenAI
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
from flask_cors import CORS, cross_origin
# from flask_swagger_ui import get_swaggerui_blueprint
import uuid
import time
from PIL import Image
import moviepy.editor as mp
import requests
import json
import pickle
import re
# from videoretalking import inference_function
# import base64
# import gfpgan_enhancer
# import threading
# import elevenlabs
# from argparse import Namespace
# from argparse import ArgumentParser
# from time import strftime
# from src.utils.init_path import init_path



class AnimationConfig:
    def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
        self.driven_audio = driven_audio_path
        self.source_image = source_image_path
        self.ref_eyeblink = None
        self.ref_pose = ref_pose_video_path
        self.checkpoint_dir = './checkpoints'
        self.result_dir = result_folder
        self.pose_style = pose_style
        self.batch_size = 8
        self.expression_scale = expression_scale
        self.input_yaw = None
        self.input_pitch = None
        self.input_roll = None
        self.enhancer = enhancer
        self.background_enhancer = None
        self.cpu = False
        self.face3dvis = False
        self.still = still  
        self.preprocess = preprocess
        self.verbose = False
        self.old_version = False
        self.net_recon = 'resnet50'
        self.init_path = None
        self.use_last_fc = False
        self.bfm_folder = './checkpoints/BFM_Fitting/'
        self.bfm_model = 'BFM_model_front.mat'
        self.focal = 1015.
        self.center = 112.
        self.camera_d = 10.
        self.z_near = 5.
        self.z_far = 15.
        self.device = 'cuda'
        self.image_hardcoded = image_hardcoded


app = Flask(__name__)
CORS(app)

TEMP_DIR = None
start_time = None
VIDEO_DIRECTORY = None
args = None
unique_id = None

app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None

# Global paths
dir_path = os.path.dirname(os.path.realpath(__file__))
current_root_path = dir_path

path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar')

# Function for running the actual task (using preprocessed data)
def process_chunk(audio_chunk, preprocessed_data, args):
    print("Entered Process Chunk Function")
    global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint
    global free_view_checkpoint
    if args.preprocess == 'full':
        mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
    else:
        mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')

    first_coeff_path = preprocessed_data["first_coeff_path"]
    crop_pic_path = preprocessed_data["crop_pic_path"]
    crop_info_path = "/home/user/app/preprocess_data/crop_info.json"
    with open(crop_info_path , "rb") as f:
            crop_info = json.load(f)

    print(f"Loaded existing preprocessed data")
    print("first_coeff_path",first_coeff_path)
    print("crop_pic_path",crop_pic_path)
    print("crop_info",crop_info)
    torch.cuda.empty_cache()
    batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still)
    audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, 
                                audio2exp_checkpoint, audio2exp_yaml_path, 
                                wav2lip_checkpoint, args.device)
    coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None)
    
    # Further processing with animate_from_coeff using the coeff_path
    animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, 
                                            facerender_yaml_path, args.device)

    torch.cuda.empty_cache()
    data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk, 
                                args.batch_size, args.input_yaw, args.input_pitch, args.input_roll, 
                                expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
    torch.cuda.empty_cache()
    print("Will Enter Animation")
    result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info, 
                                    enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)

    # video_clip = mp.VideoFileClip(temp_file_path)
    # duration = video_clip.duration
    
    app.config['temp_response'] = base64_video
    app.config['final_video_path'] = temp_file_path
    # app.config['final_video_duration'] = duration
    torch.cuda.empty_cache()
    return base64_video, temp_file_path


def create_temp_dir():
    return tempfile.TemporaryDirectory()

def save_uploaded_file(file, filename,TEMP_DIR):
    unique_filename = str(uuid.uuid4()) + "_" + filename
    file_path = os.path.join(TEMP_DIR.name, unique_filename)
    file.save(file_path)
    return file_path

client = OpenAI(api_key="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")

def openai_chat_avatar(text_prompt):
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": "Summarize the following paragraph into a complete and accurate single sentence with no more than 15 words. The summary should capture the gist of the paragraph and make sense."},
            {"role": "user", "content": f"Please summarize the following paragraph into one sentence with 15 words or fewer, ensuring it makes sense and captures the gist: {text_prompt}"},
        ],
        max_tokens = len(text_prompt),  # Limit the response to a reasonable length for a summary
    )
    return response

def ryzedb_chat_avatar(question, app_id):
    url = "https://inference.dev.ryzeai.ai/chat/stream"
    # question = question + ". Summarize the answer in one line."
    # print("question",question)
    payload = json.dumps({
    "input": {
    "chat_history": [],
    "app_id": app_id,
    "question": question
    },
    "config": {}
    })
    headers = {
        'Content-Type': 'application/json'
    }
    
    try:
        # Send the POST request
        response = requests.request("POST", url, headers=headers, data=payload)
        
        # Check for successful request
        response.raise_for_status()
        
        # Return the response JSON
        return response.text
    
    except requests.exceptions.RequestException as e:
        print(f"An error occurred: {e}")
        return None


def custom_cleanup(temp_dir, exclude_dir):
    # Iterate over the files and directories in TEMP_DIR
    for filename in os.listdir(temp_dir):
        file_path = os.path.join(temp_dir, filename)
        # Skip the directory we want to exclude
        if file_path != exclude_dir:
            try:
                if os.path.isdir(file_path):
                    shutil.rmtree(file_path)
                else:
                    os.remove(file_path)
                print(f"Deleted: {file_path}")
            except Exception as e:
                print(f"Failed to delete {file_path}. Reason: {e}")


def generate_audio(voice_cloning, voice_gender, text_prompt):
    print("generate_audio")
    if voice_cloning == 'no':
        if voice_gender == 'male':
            voice = 'echo'
            print('Entering Audio creation using elevenlabs')
            set_api_key('92e149985ea2732b4359c74346c3daee')

            audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_monolingual_v1",stream=True, latency=4)
            with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
                for chunk in audio:
                    temp_file.write(chunk)
                driven_audio_path = temp_file.name
                print('driven_audio_path',driven_audio_path)
                print('Audio file saved using elevenlabs')
                    
        else:
            voice = 'nova'

            print('Entering Audio creation using whisper')
            response = client.audio.speech.create(model="tts-1-hd",
                                            voice=voice,
                                            input = text_prompt)

            print('Audio created using whisper')
            with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
                driven_audio_path = temp_file.name
            
            response.write_to_file(driven_audio_path)
            print('Audio file saved using whisper')
    
    elif voice_cloning == 'yes':
        set_api_key('92e149985ea2732b4359c74346c3daee')
        # voice = clone(name = "User Cloned Voice",
        #             files = [user_voice_path] )
        voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings(
                        stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)

        audio = generate(text = text_prompt, voice = voice, model = "eleven_monolingual_v1",stream=True, latency=4)
        with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
            for chunk in audio:
                temp_file.write(chunk)
            driven_audio_path = temp_file.name
            print('driven_audio_path',driven_audio_path)
            # audio_duration = get_audio_duration(driven_audio_path)
            # print('Total Audio Duration in seconds',audio_duration)

    return driven_audio_path

def run_preprocessing(args):
    global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
    first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir')
    os.makedirs(first_frame_dir, exist_ok=True)
    fixed_temp_dir = "/home/user/app/preprocess_data/"
    os.makedirs(fixed_temp_dir, exist_ok=True)
    preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")

    if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes":
        print("Loading preprocessed data...")
        with open(preprocessed_data_path, "rb") as f:
            preprocessed_data = pickle.load(f)
        print("Loaded existing preprocessed data from:", preprocessed_data_path)

    return preprocessed_data

# def remove_brackets(text):
#     # Use regex to remove content in brackets at the end of the text
#     cleaned_text = re.sub(r'\s*\[.*?\]\s*$', '', text)
#     return cleaned_text.strip()

def extract_content(data):
    pattern = r'"content":"((?:\\.|[^"\\])*)"'
    match = re.search(pattern, data)
    if match:
        return match.group(1)
    else:
        return None

@app.route("/run", methods=['POST'])
def generate_video():
    global start_time, VIDEO_DIRECTORY
    start_time = time.time()
    global TEMP_DIR
    TEMP_DIR = create_temp_dir()
    print('request:',request.method)
    try:
        if request.method == 'POST':
            # source_image = request.files['source_image']
            image_path = '/home/user/app/images/shared image (3).png'
            source_image = Image.open(image_path)
            text_prompt = request.form['text_prompt']
            
            print('Input text prompt: ',text_prompt)
            text_prompt = text_prompt.strip()
            if not text_prompt:
                return jsonify({'error': 'Input text prompt cannot be blank'}), 400
                
            voice_cloning = request.form.get('voice_cloning', 'no')
            image_hardcoded = request.form.get('image_hardcoded', 'yes')
            chat_model_used = request.form.get('chat_model_used', 'ryzedb')
            target_language = request.form.get('target_language', 'original_text')
            print('target_language',target_language)
            pose_style = int(request.form.get('pose_style', 1))
            expression_scale = float(request.form.get('expression_scale', 1))
            enhancer = request.form.get('enhancer', None)
            voice_gender = request.form.get('voice_gender', 'male')
            still_str = request.form.get('still', 'False')
            still = still_str.lower() == 'false'
            print('still', still)
            preprocess = request.form.get('preprocess', 'crop')
            print('preprocess selected: ',preprocess)
            ref_pose_video = request.files.get('ref_pose', None)
            app_id = request.form['app_id']
            if not app_id:
                return jsonify({'error': 'App ID cannot be blank'}), 400


            if chat_model_used == 'ryzedb':
                start_time_ryze = time.time()
                response = ryzedb_chat_avatar(text_prompt, app_id)
                text_prompt = extract_content(response)
                text_prompt = text_prompt.replace('\n', ' ').replace('\\n', ' ').strip()
                if "No information available" in text_prompt:
                    text_prompt = re.sub(r'\\+', '', text_prompt)

                response = openai_chat_avatar(text_prompt)
                text_prompt = response.choices[0].message.content.strip()
                app.config['text_prompt'] = text_prompt
                print('Final output text prompt using ryzedb: ',text_prompt)
                # events  = response.split('\r\n\r\n')
                # content = None
                # for event in events:
                # # Split each event block by "\r\n" to get the lines
                #     lines = event.split('\r\n')
                #     if len(lines) > 1 and lines[0] == 'event: data':
                #         # Extract the JSON part from the second line and parse it
                #         json_data = lines[1].replace('data: ', '')
                #         try:
                #             data = json.loads(json_data)
                #             text_prompt = data.get('content')
                #             app.config['text_prompt'] = text_prompt
                #             end_time_ryze = time.time()
                #             diff = end_time_ryze - start_time_ryze
                #             print('Final output text prompt using ryzedb: ',text_prompt)
                #             print('Time to get response from ryzedb: ',diff)
                #             break  # Exit the loop once content is found
                #         except json.JSONDecodeError:
                #             continue

            elif chat_model_used == 'self':
                text_prompt = text_prompt.strip()
                
            else:
                print("No Ryze database found")
            
            source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
            print(source_image_path)

            
            driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
            
            save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
            result_folder = os.path.join(save_dir, "results")
            os.makedirs(result_folder, exist_ok=True)
    
            ref_pose_video_path = None
            if ref_pose_video:
                with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
                    ref_pose_video_path = temp_file.name
                    ref_pose_video.save(ref_pose_video_path)
                    print('ref_pose_video_path',ref_pose_video_path)
                    
    except Exception as e:
        app.logger.error(f"An error occurred: {e}")
        return "An error occurred", 500
    
    args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
        
    if torch.cuda.is_available() and not args.cpu:
        args.device = "cuda"
    else:
        args.device = "cpu"
        
    # generation_thread = threading.Thread(target=main, args=(args,))
    # app.config['generation_thread'] = generation_thread
    # generation_thread.start()
    # response_data = {"message": "Video generation started",
    #                 "process_id": generation_thread.ident}

    try:
        preprocessed_data = run_preprocessing(args)
        base64_video, temp_file_path = process_chunk(driven_audio_path, preprocessed_data, args)
        final_video_path = app.config['final_video_path']
        print('final_video_path',final_video_path)

        if temp_file_path and temp_file_path.endswith('.mp4'):
            filename = os.path.basename(temp_file_path)
            os.makedirs('videos', exist_ok=True)
            VIDEO_DIRECTORY = os.path.abspath('videos')
            print("VIDEO_DIRECTORY: ",VIDEO_DIRECTORY)
            destination_path = os.path.join(VIDEO_DIRECTORY, filename)
            shutil.copy(temp_file_path, destination_path)
            video_url = f"/videos/{filename}"

            if final_video_path and os.path.exists(final_video_path):
                os.remove(final_video_path)
                print("Deleted video file:", final_video_path)
    
            preprocess_dir = os.path.join("/tmp", "preprocess_data")
            custom_cleanup(TEMP_DIR.name, preprocess_dir)

            print("Temporary files cleaned up, but preprocess_data is retained.")
            end_time = time.time()
            time_taken = end_time - start_time
        
            print(f"Time taken for endpoint: {time_taken:.2f} seconds")
            
            return jsonify({
                    "message": "Video processed and saved successfully.",
                    "video_url": video_url,
                    "text_prompt": text_prompt,
                    "time_taken": time_taken,
                    "status": "success"
                })
        else:
            return jsonify({
                "message": "Failed to process the video.",
                "status": "error"
            }), 500
        
    except Exception as e:
        return jsonify({'status': 'error', 'message': str(e)}), 500
        

@app.route("/videos/<string:filename>", methods=['GET'])
def serve_video(filename):
    global VIDEO_DIRECTORY
    return send_from_directory(VIDEO_DIRECTORY, filename, as_attachment=False)



# @app.route("/status", methods=["GET"])
# def check_generation_status():
#     global TEMP_DIR
#     global start_time
#     response = {"base64_video": "","text_prompt":"", "status": ""}
#     process_id = request.args.get('process_id', None)

#     # process_id is required to check the status for that specific process
#     if process_id:
#         generation_thread = app.config.get('generation_thread')
#         if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive():
#             return jsonify({"status": "in_progress"}), 200
#         elif app.config.get('temp_response'):
#             # app.config['temp_response']['status'] = 'completed'
#             final_response = app.config['temp_response']
#             response["base64_video"] = final_response
#             response["text_prompt"] = app.config.get('text_prompt')
#             response["duration"] = app.config.get('final_video_duration')
#             response["status"] = "completed"

#             final_video_path = app.config['final_video_path']
#             print('final_video_path',final_video_path)


#             if final_video_path and os.path.exists(final_video_path):
#                 os.remove(final_video_path)
#                 print("Deleted video file:", final_video_path)

#             # TEMP_DIR.cleanup()
#             preprocess_dir = os.path.join("/tmp", "preprocess_data")
#             custom_cleanup(TEMP_DIR.name, preprocess_dir)

#             print("Temporary files cleaned up, but preprocess_data is retained.")
            
#             end_time = time.time()
#             total_time = round(end_time - start_time, 2)
#             print("Total time taken for execution:", total_time, " seconds")
#             response["time_taken"] = total_time
#             return jsonify(response)
#     return jsonify({"error":"No process id provided"})

@app.route("/health", methods=["GET"])
def health_status():
    response = {"online": "true"}
    return jsonify(response)
if __name__ == '__main__':
    app.run(debug=True)