File size: 22,303 Bytes
0d015bf 20cd47a d8a6eb5 20cd47a c3727de 7d6f952 b8b3af8 3845d1c 5b8f239 7e5f34c 8c41ef2 20cd47a 7eb654c 20cd47a a42f5f3 20cd47a 7dac13b da97815 20cd47a 383d8e5 20cd47a 4978fe4 20cd47a 1aba95f a42f5f3 20cd47a 7eb654c 9fb8d6e 20cd47a 7d6f952 20cd47a 8c41ef2 20cd47a 8c41ef2 20cd47a 8c41ef2 7bc4297 8c41ef2 a42f5f3 8c41ef2 7bc4297 8c41ef2 7bc4297 8c41ef2 7bc4297 8c41ef2 7d6f952 7e5f34c 8c41ef2 20cd47a 537d818 20cd47a c3866eb c3727de 842cb96 33127dd c3727de 33127dd c3727de d5f5c5c c3866eb 842cb96 c3866eb d5f5c5c c3866eb 20cd47a a42f5f3 20cd47a 8c41ef2 b2a7725 8c41ef2 de73589 8c41ef2 ee40a9d 470dd9c 5b8f239 840ea2e 5b8f239 20cd47a 2dc6197 9fb8d6e 7eb654c 20cd47a f6138ad 44dcd57 c3727de 4cacb05 c3727de 44dcd57 d480876 44dcd57 e603987 d480876 44dcd57 a42f5f3 af2fc52 44dcd57 d0efd99 44dcd57 95397b0 44dcd57 d5f5c5c af2fc52 c3727de c3866eb f166248 d5f5c5c 5b8f239 464f03d 7bca006 842cb96 3b13078 5b8f239 c3866eb 7989b7e c3866eb af2fc52 24326ff 44dcd57 24326ff ee40a9d 8c41ef2 44dcd57 60da68b cd9bf20 20cd47a cd9bf20 f6c39fb 8d06dcf cd9bf20 60da68b 9fb8d6e 124c929 9fb8d6e cd9bf20 9fb8d6e 14c015d ee40a9d 9fb8d6e cd9bf20 9fb8d6e cd9bf20 a42f5f3 cd9bf20 20cd47a 6764da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
from flask import Flask, request, jsonify, send_from_directory
import torch
import shutil
import os
import sys
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
import tempfile
from openai import OpenAI
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
from flask_cors import CORS, cross_origin
# from flask_swagger_ui import get_swaggerui_blueprint
import uuid
import time
from PIL import Image
import moviepy.editor as mp
import requests
import json
import pickle
import re
# from videoretalking import inference_function
# import base64
# import gfpgan_enhancer
# import threading
# import elevenlabs
# from argparse import Namespace
# from argparse import ArgumentParser
# from time import strftime
# from src.utils.init_path import init_path
class AnimationConfig:
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
self.driven_audio = driven_audio_path
self.source_image = source_image_path
self.ref_eyeblink = None
self.ref_pose = ref_pose_video_path
self.checkpoint_dir = './checkpoints'
self.result_dir = result_folder
self.pose_style = pose_style
self.batch_size = 8
self.expression_scale = expression_scale
self.input_yaw = None
self.input_pitch = None
self.input_roll = None
self.enhancer = enhancer
self.background_enhancer = None
self.cpu = False
self.face3dvis = False
self.still = still
self.preprocess = preprocess
self.verbose = False
self.old_version = False
self.net_recon = 'resnet50'
self.init_path = None
self.use_last_fc = False
self.bfm_folder = './checkpoints/BFM_Fitting/'
self.bfm_model = 'BFM_model_front.mat'
self.focal = 1015.
self.center = 112.
self.camera_d = 10.
self.z_near = 5.
self.z_far = 15.
self.device = 'cuda'
self.image_hardcoded = image_hardcoded
app = Flask(__name__)
CORS(app)
TEMP_DIR = None
start_time = None
VIDEO_DIRECTORY = None
args = None
unique_id = None
app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None
# Global paths
dir_path = os.path.dirname(os.path.realpath(__file__))
current_root_path = dir_path
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar')
# Function for running the actual task (using preprocessed data)
def process_chunk(audio_chunk, preprocessed_data, args):
print("Entered Process Chunk Function")
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint
global free_view_checkpoint
if args.preprocess == 'full':
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
else:
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
first_coeff_path = preprocessed_data["first_coeff_path"]
crop_pic_path = preprocessed_data["crop_pic_path"]
crop_info_path = "/home/user/app/preprocess_data/crop_info.json"
with open(crop_info_path , "rb") as f:
crop_info = json.load(f)
print(f"Loaded existing preprocessed data")
print("first_coeff_path",first_coeff_path)
print("crop_pic_path",crop_pic_path)
print("crop_info",crop_info)
torch.cuda.empty_cache()
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, args.device)
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None)
# Further processing with animate_from_coeff using the coeff_path
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
facerender_yaml_path, args.device)
torch.cuda.empty_cache()
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk,
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll,
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
torch.cuda.empty_cache()
print("Will Enter Animation")
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info,
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
# video_clip = mp.VideoFileClip(temp_file_path)
# duration = video_clip.duration
app.config['temp_response'] = base64_video
app.config['final_video_path'] = temp_file_path
# app.config['final_video_duration'] = duration
torch.cuda.empty_cache()
return base64_video, temp_file_path
def create_temp_dir():
return tempfile.TemporaryDirectory()
def save_uploaded_file(file, filename,TEMP_DIR):
unique_filename = str(uuid.uuid4()) + "_" + filename
file_path = os.path.join(TEMP_DIR.name, unique_filename)
file.save(file_path)
return file_path
client = OpenAI(api_key="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")
def openai_chat_avatar(text_prompt):
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "Summarize the following paragraph into a complete and accurate single sentence with no more than 15 words. The summary should capture the gist of the paragraph and make sense."},
{"role": "user", "content": f"Please summarize the following paragraph into one sentence with 15 words or fewer, ensuring it makes sense and captures the gist: {text_prompt}"},
],
max_tokens = len(text_prompt), # Limit the response to a reasonable length for a summary
)
return response
def ryzedb_chat_avatar(question, app_id):
url = "https://inference.dev.ryzeai.ai/chat/stream"
# question = question + ". Summarize the answer in one line."
# print("question",question)
payload = json.dumps({
"input": {
"chat_history": [],
"app_id": app_id,
"question": question
},
"config": {}
})
headers = {
'Content-Type': 'application/json'
}
try:
# Send the POST request
response = requests.request("POST", url, headers=headers, data=payload)
# Check for successful request
response.raise_for_status()
# Return the response JSON
return response.text
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None
def custom_cleanup(temp_dir, exclude_dir):
# Iterate over the files and directories in TEMP_DIR
for filename in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, filename)
# Skip the directory we want to exclude
if file_path != exclude_dir:
try:
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
print(f"Deleted: {file_path}")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def generate_audio(voice_cloning, voice_gender, text_prompt):
print("generate_audio")
if voice_cloning == 'no':
if voice_gender == 'male':
voice = 'echo'
print('Entering Audio creation using elevenlabs')
set_api_key('92e149985ea2732b4359c74346c3daee')
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_monolingual_v1",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
print('Audio file saved using elevenlabs')
else:
voice = 'nova'
print('Entering Audio creation using whisper')
response = client.audio.speech.create(model="tts-1-hd",
voice=voice,
input = text_prompt)
print('Audio created using whisper')
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
driven_audio_path = temp_file.name
response.write_to_file(driven_audio_path)
print('Audio file saved using whisper')
elif voice_cloning == 'yes':
set_api_key('92e149985ea2732b4359c74346c3daee')
# voice = clone(name = "User Cloned Voice",
# files = [user_voice_path] )
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings(
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)
audio = generate(text = text_prompt, voice = voice, model = "eleven_monolingual_v1",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
# audio_duration = get_audio_duration(driven_audio_path)
# print('Total Audio Duration in seconds',audio_duration)
return driven_audio_path
def run_preprocessing(args):
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
fixed_temp_dir = "/home/user/app/preprocess_data/"
os.makedirs(fixed_temp_dir, exist_ok=True)
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes":
print("Loading preprocessed data...")
with open(preprocessed_data_path, "rb") as f:
preprocessed_data = pickle.load(f)
print("Loaded existing preprocessed data from:", preprocessed_data_path)
return preprocessed_data
# def remove_brackets(text):
# # Use regex to remove content in brackets at the end of the text
# cleaned_text = re.sub(r'\s*\[.*?\]\s*$', '', text)
# return cleaned_text.strip()
def extract_content(data):
pattern = r'"content":"((?:\\.|[^"\\])*)"'
match = re.search(pattern, data)
if match:
return match.group(1)
else:
return None
@app.route("/run", methods=['POST'])
def generate_video():
global start_time, VIDEO_DIRECTORY
start_time = time.time()
global TEMP_DIR
TEMP_DIR = create_temp_dir()
print('request:',request.method)
try:
if request.method == 'POST':
# source_image = request.files['source_image']
image_path = '/home/user/app/images/shared image (3).png'
source_image = Image.open(image_path)
text_prompt = request.form['text_prompt']
print('Input text prompt: ',text_prompt)
text_prompt = text_prompt.strip()
if not text_prompt:
return jsonify({'error': 'Input text prompt cannot be blank'}), 400
voice_cloning = request.form.get('voice_cloning', 'no')
image_hardcoded = request.form.get('image_hardcoded', 'yes')
chat_model_used = request.form.get('chat_model_used', 'ryzedb')
target_language = request.form.get('target_language', 'original_text')
print('target_language',target_language)
pose_style = int(request.form.get('pose_style', 1))
expression_scale = float(request.form.get('expression_scale', 1))
enhancer = request.form.get('enhancer', None)
voice_gender = request.form.get('voice_gender', 'male')
still_str = request.form.get('still', 'False')
still = still_str.lower() == 'false'
print('still', still)
preprocess = request.form.get('preprocess', 'crop')
print('preprocess selected: ',preprocess)
ref_pose_video = request.files.get('ref_pose', None)
app_id = request.form['app_id']
if not app_id:
return jsonify({'error': 'App ID cannot be blank'}), 400
if chat_model_used == 'ryzedb':
start_time_ryze = time.time()
response = ryzedb_chat_avatar(text_prompt, app_id)
text_prompt = extract_content(response)
text_prompt = text_prompt.replace('\n', ' ').replace('\\n', ' ').strip()
if "No information available" in text_prompt:
text_prompt = re.sub(r'\\+', '', text_prompt)
response = openai_chat_avatar(text_prompt)
text_prompt = response.choices[0].message.content.strip()
app.config['text_prompt'] = text_prompt
print('Final output text prompt using ryzedb: ',text_prompt)
# events = response.split('\r\n\r\n')
# content = None
# for event in events:
# # Split each event block by "\r\n" to get the lines
# lines = event.split('\r\n')
# if len(lines) > 1 and lines[0] == 'event: data':
# # Extract the JSON part from the second line and parse it
# json_data = lines[1].replace('data: ', '')
# try:
# data = json.loads(json_data)
# text_prompt = data.get('content')
# app.config['text_prompt'] = text_prompt
# end_time_ryze = time.time()
# diff = end_time_ryze - start_time_ryze
# print('Final output text prompt using ryzedb: ',text_prompt)
# print('Time to get response from ryzedb: ',diff)
# break # Exit the loop once content is found
# except json.JSONDecodeError:
# continue
elif chat_model_used == 'self':
text_prompt = text_prompt.strip()
else:
print("No Ryze database found")
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
print(source_image_path)
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
result_folder = os.path.join(save_dir, "results")
os.makedirs(result_folder, exist_ok=True)
ref_pose_video_path = None
if ref_pose_video:
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
ref_pose_video_path = temp_file.name
ref_pose_video.save(ref_pose_video_path)
print('ref_pose_video_path',ref_pose_video_path)
except Exception as e:
app.logger.error(f"An error occurred: {e}")
return "An error occurred", 500
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
if torch.cuda.is_available() and not args.cpu:
args.device = "cuda"
else:
args.device = "cpu"
# generation_thread = threading.Thread(target=main, args=(args,))
# app.config['generation_thread'] = generation_thread
# generation_thread.start()
# response_data = {"message": "Video generation started",
# "process_id": generation_thread.ident}
try:
preprocessed_data = run_preprocessing(args)
base64_video, temp_file_path = process_chunk(driven_audio_path, preprocessed_data, args)
final_video_path = app.config['final_video_path']
print('final_video_path',final_video_path)
if temp_file_path and temp_file_path.endswith('.mp4'):
filename = os.path.basename(temp_file_path)
os.makedirs('videos', exist_ok=True)
VIDEO_DIRECTORY = os.path.abspath('videos')
print("VIDEO_DIRECTORY: ",VIDEO_DIRECTORY)
destination_path = os.path.join(VIDEO_DIRECTORY, filename)
shutil.copy(temp_file_path, destination_path)
video_url = f"/videos/{filename}"
if final_video_path and os.path.exists(final_video_path):
os.remove(final_video_path)
print("Deleted video file:", final_video_path)
preprocess_dir = os.path.join("/tmp", "preprocess_data")
custom_cleanup(TEMP_DIR.name, preprocess_dir)
print("Temporary files cleaned up, but preprocess_data is retained.")
end_time = time.time()
time_taken = end_time - start_time
print(f"Time taken for endpoint: {time_taken:.2f} seconds")
return jsonify({
"message": "Video processed and saved successfully.",
"video_url": video_url,
"text_prompt": text_prompt,
"time_taken": time_taken,
"status": "success"
})
else:
return jsonify({
"message": "Failed to process the video.",
"status": "error"
}), 500
except Exception as e:
return jsonify({'status': 'error', 'message': str(e)}), 500
@app.route("/videos/<string:filename>", methods=['GET'])
def serve_video(filename):
global VIDEO_DIRECTORY
return send_from_directory(VIDEO_DIRECTORY, filename, as_attachment=False)
# @app.route("/status", methods=["GET"])
# def check_generation_status():
# global TEMP_DIR
# global start_time
# response = {"base64_video": "","text_prompt":"", "status": ""}
# process_id = request.args.get('process_id', None)
# # process_id is required to check the status for that specific process
# if process_id:
# generation_thread = app.config.get('generation_thread')
# if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive():
# return jsonify({"status": "in_progress"}), 200
# elif app.config.get('temp_response'):
# # app.config['temp_response']['status'] = 'completed'
# final_response = app.config['temp_response']
# response["base64_video"] = final_response
# response["text_prompt"] = app.config.get('text_prompt')
# response["duration"] = app.config.get('final_video_duration')
# response["status"] = "completed"
# final_video_path = app.config['final_video_path']
# print('final_video_path',final_video_path)
# if final_video_path and os.path.exists(final_video_path):
# os.remove(final_video_path)
# print("Deleted video file:", final_video_path)
# # TEMP_DIR.cleanup()
# preprocess_dir = os.path.join("/tmp", "preprocess_data")
# custom_cleanup(TEMP_DIR.name, preprocess_dir)
# print("Temporary files cleaned up, but preprocess_data is retained.")
# end_time = time.time()
# total_time = round(end_time - start_time, 2)
# print("Total time taken for execution:", total_time, " seconds")
# response["time_taken"] = total_time
# return jsonify(response)
# return jsonify({"error":"No process id provided"})
@app.route("/health", methods=["GET"])
def health_status():
response = {"online": "true"}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True) |