|
|
|
"""
|
|
This module contains the code for a dataset class called FaceMaskDataset, which is used to process and
|
|
load image data related to face masks. The dataset class inherits from the PyTorch Dataset class and
|
|
provides methods for data augmentation, getting items from the dataset, and determining the length of the
|
|
dataset. The module also includes imports for necessary libraries such as json, random, pathlib, torch,
|
|
PIL, and transformers.
|
|
"""
|
|
|
|
import json
|
|
import random
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from torch.utils.data import Dataset
|
|
from torchvision import transforms
|
|
from transformers import CLIPImageProcessor
|
|
|
|
|
|
class FaceMaskDataset(Dataset):
|
|
"""
|
|
FaceMaskDataset is a custom dataset for face mask images.
|
|
|
|
Args:
|
|
img_size (int): The size of the input images.
|
|
drop_ratio (float, optional): The ratio of dropped pixels during data augmentation. Defaults to 0.1.
|
|
data_meta_paths (list, optional): The paths to the metadata files containing image paths and labels. Defaults to ["./data/HDTF_meta.json"].
|
|
sample_margin (int, optional): The margin for sampling regions in the image. Defaults to 30.
|
|
|
|
Attributes:
|
|
img_size (int): The size of the input images.
|
|
drop_ratio (float): The ratio of dropped pixels during data augmentation.
|
|
data_meta_paths (list): The paths to the metadata files containing image paths and labels.
|
|
sample_margin (int): The margin for sampling regions in the image.
|
|
processor (CLIPImageProcessor): The image processor for preprocessing images.
|
|
transform (transforms.Compose): The image augmentation transform.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size,
|
|
drop_ratio=0.1,
|
|
data_meta_paths=None,
|
|
sample_margin=30,
|
|
):
|
|
super().__init__()
|
|
|
|
self.img_size = img_size
|
|
self.sample_margin = sample_margin
|
|
|
|
vid_meta = []
|
|
for data_meta_path in data_meta_paths:
|
|
with open(data_meta_path, "r", encoding="utf-8") as f:
|
|
vid_meta.extend(json.load(f))
|
|
self.vid_meta = vid_meta
|
|
self.length = len(self.vid_meta)
|
|
|
|
self.clip_image_processor = CLIPImageProcessor()
|
|
|
|
self.transform = transforms.Compose(
|
|
[
|
|
transforms.Resize(self.img_size),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
self.cond_transform = transforms.Compose(
|
|
[
|
|
transforms.Resize(self.img_size),
|
|
transforms.ToTensor(),
|
|
]
|
|
)
|
|
|
|
self.drop_ratio = drop_ratio
|
|
|
|
def augmentation(self, image, transform, state=None):
|
|
"""
|
|
Apply data augmentation to the input image.
|
|
|
|
Args:
|
|
image (PIL.Image): The input image.
|
|
transform (torchvision.transforms.Compose): The data augmentation transforms.
|
|
state (dict, optional): The random state for reproducibility. Defaults to None.
|
|
|
|
Returns:
|
|
PIL.Image: The augmented image.
|
|
"""
|
|
if state is not None:
|
|
torch.set_rng_state(state)
|
|
return transform(image)
|
|
|
|
def __getitem__(self, index):
|
|
video_meta = self.vid_meta[index]
|
|
video_path = video_meta["image_path"]
|
|
mask_path = video_meta["mask_path"]
|
|
face_emb_path = video_meta["face_emb"]
|
|
|
|
video_frames = sorted(Path(video_path).iterdir())
|
|
video_length = len(video_frames)
|
|
|
|
margin = min(self.sample_margin, video_length)
|
|
|
|
ref_img_idx = random.randint(0, video_length - 1)
|
|
if ref_img_idx + margin < video_length:
|
|
tgt_img_idx = random.randint(
|
|
ref_img_idx + margin, video_length - 1)
|
|
elif ref_img_idx - margin > 0:
|
|
tgt_img_idx = random.randint(0, ref_img_idx - margin)
|
|
else:
|
|
tgt_img_idx = random.randint(0, video_length - 1)
|
|
|
|
ref_img_pil = Image.open(video_frames[ref_img_idx])
|
|
tgt_img_pil = Image.open(video_frames[tgt_img_idx])
|
|
|
|
tgt_mask_pil = Image.open(mask_path)
|
|
|
|
assert ref_img_pil is not None, "Fail to load reference image."
|
|
assert tgt_img_pil is not None, "Fail to load target image."
|
|
assert tgt_mask_pil is not None, "Fail to load target mask."
|
|
|
|
state = torch.get_rng_state()
|
|
tgt_img = self.augmentation(tgt_img_pil, self.transform, state)
|
|
tgt_mask_img = self.augmentation(
|
|
tgt_mask_pil, self.cond_transform, state)
|
|
tgt_mask_img = tgt_mask_img.repeat(3, 1, 1)
|
|
ref_img_vae = self.augmentation(
|
|
ref_img_pil, self.transform, state)
|
|
face_emb = torch.load(face_emb_path)
|
|
|
|
|
|
sample = {
|
|
"video_dir": video_path,
|
|
"img": tgt_img,
|
|
"tgt_mask": tgt_mask_img,
|
|
"ref_img": ref_img_vae,
|
|
"face_emb": face_emb,
|
|
}
|
|
|
|
return sample
|
|
|
|
def __len__(self):
|
|
return len(self.vid_meta)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
data = FaceMaskDataset(img_size=(512, 512))
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
data, batch_size=4, shuffle=True, num_workers=1
|
|
)
|
|
for step, batch in enumerate(train_dataloader):
|
|
print(batch["tgt_mask"].shape)
|
|
break
|
|
|