|
|
|
"""
|
|
This module is responsible for animating faces in videos using a combination of deep learning techniques.
|
|
It provides a pipeline for generating face animations by processing video frames and extracting face features.
|
|
The module utilizes various schedulers and utilities for efficient face animation and supports different types
|
|
of latents for more control over the animation process.
|
|
|
|
Functions and Classes:
|
|
- FaceAnimatePipeline: A class that extends the DiffusionPipeline class from the diffusers library to handle face animation tasks.
|
|
- __init__: Initializes the pipeline with the necessary components (VAE, UNets, face locator, etc.).
|
|
- prepare_latents: Generates or loads latents for the animation process, scaling them according to the scheduler's requirements.
|
|
- prepare_extra_step_kwargs: Prepares extra keyword arguments for the scheduler step, ensuring compatibility with different schedulers.
|
|
- decode_latents: Decodes the latents into video frames, ready for animation.
|
|
|
|
Usage:
|
|
- Import the necessary packages and classes.
|
|
- Create a FaceAnimatePipeline instance with the required components.
|
|
- Prepare the latents for the animation process.
|
|
- Use the pipeline to generate the animated video.
|
|
|
|
Note:
|
|
- This module is designed to work with the diffusers library, which provides the underlying framework for face animation using deep learning.
|
|
- The module is intended for research and development purposes, and further optimization and customization may be required for specific use cases.
|
|
"""
|
|
|
|
import inspect
|
|
from dataclasses import dataclass
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import (DDIMScheduler, DiffusionPipeline,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
|
|
LMSDiscreteScheduler, PNDMScheduler)
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.utils import BaseOutput
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from einops import rearrange, repeat
|
|
from tqdm import tqdm
|
|
|
|
from hallo.models.mutual_self_attention import ReferenceAttentionControl
|
|
|
|
|
|
@dataclass
|
|
class FaceAnimatePipelineOutput(BaseOutput):
|
|
"""
|
|
FaceAnimatePipelineOutput is a custom class that inherits from BaseOutput and represents the output of the FaceAnimatePipeline.
|
|
|
|
Attributes:
|
|
videos (Union[torch.Tensor, np.ndarray]): A tensor or numpy array containing the generated video frames.
|
|
|
|
Methods:
|
|
__init__(self, videos: Union[torch.Tensor, np.ndarray]): Initializes the FaceAnimatePipelineOutput object with the generated video frames.
|
|
"""
|
|
videos: Union[torch.Tensor, np.ndarray]
|
|
|
|
class FaceAnimatePipeline(DiffusionPipeline):
|
|
"""
|
|
FaceAnimatePipeline is a custom DiffusionPipeline for animating faces.
|
|
|
|
It inherits from the DiffusionPipeline class and is used to animate faces by
|
|
utilizing a variational autoencoder (VAE), a reference UNet, a denoising UNet,
|
|
a face locator, and an image processor. The pipeline is responsible for generating
|
|
and animating face latents, and decoding the latents to produce the final video output.
|
|
|
|
Attributes:
|
|
vae (VaeImageProcessor): Variational autoencoder for processing images.
|
|
reference_unet (nn.Module): Reference UNet for mutual self-attention.
|
|
denoising_unet (nn.Module): Denoising UNet for image denoising.
|
|
face_locator (nn.Module): Face locator for detecting and cropping faces.
|
|
image_proj (nn.Module): Image projector for processing images.
|
|
scheduler (Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler,
|
|
EulerDiscreteScheduler, EulerAncestralDiscreteScheduler,
|
|
DPMSolverMultistepScheduler]): Diffusion scheduler for
|
|
controlling the noise level.
|
|
|
|
Methods:
|
|
__init__(self, vae, reference_unet, denoising_unet, face_locator,
|
|
image_proj, scheduler): Initializes the FaceAnimatePipeline
|
|
with the given components and scheduler.
|
|
prepare_latents(self, batch_size, num_channels_latents, width, height,
|
|
video_length, dtype, device, generator=None, latents=None):
|
|
Prepares the initial latents for video generation.
|
|
prepare_extra_step_kwargs(self, generator, eta): Prepares extra keyword
|
|
arguments for the scheduler step.
|
|
decode_latents(self, latents): Decodes the latents to produce the final
|
|
video output.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
vae,
|
|
reference_unet,
|
|
denoising_unet,
|
|
face_locator,
|
|
image_proj,
|
|
scheduler: Union[
|
|
DDIMScheduler,
|
|
PNDMScheduler,
|
|
LMSDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
],
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
reference_unet=reference_unet,
|
|
denoising_unet=denoising_unet,
|
|
face_locator=face_locator,
|
|
scheduler=scheduler,
|
|
image_proj=image_proj,
|
|
)
|
|
|
|
self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
|
|
self.ref_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True,
|
|
)
|
|
|
|
@property
|
|
def _execution_device(self):
|
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
|
return self.device
|
|
for module in self.unet.modules():
|
|
if (
|
|
hasattr(module, "_hf_hook")
|
|
and hasattr(module._hf_hook, "execution_device")
|
|
and module._hf_hook.execution_device is not None
|
|
):
|
|
return torch.device(module._hf_hook.execution_device)
|
|
return self.device
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size: int,
|
|
num_channels_latents: int,
|
|
width: int,
|
|
height: int,
|
|
video_length: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.Tensor] = None
|
|
):
|
|
"""
|
|
Prepares the initial latents for video generation.
|
|
|
|
Args:
|
|
batch_size (int): Number of videos to generate in parallel.
|
|
num_channels_latents (int): Number of channels in the latents.
|
|
width (int): Width of the video frame.
|
|
height (int): Height of the video frame.
|
|
video_length (int): Length of the video in frames.
|
|
dtype (torch.dtype): Data type of the latents.
|
|
device (torch.device): Device to store the latents on.
|
|
generator (Optional[torch.Generator]): Random number generator for reproducibility.
|
|
latents (Optional[torch.Tensor]): Pre-generated latents (optional).
|
|
|
|
Returns:
|
|
latents (torch.Tensor): Tensor of shape (batch_size, num_channels_latents, width, height)
|
|
containing the initial latents for video generation.
|
|
"""
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
video_length,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(
|
|
shape, generator=generator, device=device, dtype=dtype
|
|
)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
"""
|
|
Prepares extra keyword arguments for the scheduler step.
|
|
|
|
Args:
|
|
generator (Optional[torch.Generator]): Random number generator for reproducibility.
|
|
eta (float): The eta (η) parameter used with the DDIMScheduler.
|
|
It corresponds to η in the DDIM paper (https://arxiv.org/abs/2010.02502) and should be between [0, 1].
|
|
|
|
Returns:
|
|
dict: A dictionary containing the extra keyword arguments for the scheduler step.
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def decode_latents(self, latents):
|
|
"""
|
|
Decode the latents to produce a video.
|
|
|
|
Parameters:
|
|
latents (torch.Tensor): The latents to be decoded.
|
|
|
|
Returns:
|
|
video (torch.Tensor): The decoded video.
|
|
video_length (int): The length of the video in frames.
|
|
"""
|
|
video_length = latents.shape[2]
|
|
latents = 1 / 0.18215 * latents
|
|
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
|
|
|
video = []
|
|
for frame_idx in tqdm(range(latents.shape[0])):
|
|
video.append(self.vae.decode(
|
|
latents[frame_idx: frame_idx + 1]).sample)
|
|
video = torch.cat(video)
|
|
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
|
video = (video / 2 + 0.5).clamp(0, 1)
|
|
|
|
video = video.cpu().float().numpy()
|
|
return video
|
|
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
ref_image,
|
|
face_emb,
|
|
audio_tensor,
|
|
face_mask,
|
|
pixel_values_full_mask,
|
|
pixel_values_face_mask,
|
|
pixel_values_lip_mask,
|
|
width,
|
|
height,
|
|
video_length,
|
|
num_inference_steps,
|
|
guidance_scale,
|
|
num_images_per_prompt=1,
|
|
eta: float = 0.0,
|
|
motion_scale: Optional[List[torch.Tensor]] = None,
|
|
generator: Optional[Union[torch.Generator,
|
|
List[torch.Generator]]] = None,
|
|
output_type: Optional[str] = "tensor",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[
|
|
int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: Optional[int] = 1,
|
|
**kwargs,
|
|
):
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
device = self._execution_device
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
batch_size = 1
|
|
|
|
|
|
clip_image_embeds = face_emb
|
|
clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype)
|
|
|
|
encoder_hidden_states = self.image_proj(clip_image_embeds)
|
|
uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds))
|
|
|
|
if do_classifier_free_guidance:
|
|
encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0)
|
|
|
|
reference_control_writer = ReferenceAttentionControl(
|
|
self.reference_unet,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
mode="write",
|
|
batch_size=batch_size,
|
|
fusion_blocks="full",
|
|
)
|
|
reference_control_reader = ReferenceAttentionControl(
|
|
self.denoising_unet,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
mode="read",
|
|
batch_size=batch_size,
|
|
fusion_blocks="full",
|
|
)
|
|
|
|
num_channels_latents = self.denoising_unet.in_channels
|
|
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
width,
|
|
height,
|
|
video_length,
|
|
clip_image_embeds.dtype,
|
|
device,
|
|
generator,
|
|
)
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w")
|
|
ref_image_tensor = self.ref_image_processor.preprocess(ref_image_tensor, height=height, width=width)
|
|
ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device)
|
|
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
|
ref_image_latents = ref_image_latents * 0.18215
|
|
|
|
|
|
face_mask = face_mask.unsqueeze(1).to(dtype=self.face_locator.dtype, device=self.face_locator.device)
|
|
face_mask = repeat(face_mask, "b f c h w -> b (repeat f) c h w", repeat=video_length)
|
|
face_mask = face_mask.transpose(1, 2)
|
|
face_mask = self.face_locator(face_mask)
|
|
face_mask = torch.cat([torch.zeros_like(face_mask), face_mask], dim=0) if do_classifier_free_guidance else face_mask
|
|
|
|
pixel_values_full_mask = (
|
|
[torch.cat([mask] * 2) for mask in pixel_values_full_mask]
|
|
if do_classifier_free_guidance
|
|
else pixel_values_full_mask
|
|
)
|
|
pixel_values_face_mask = (
|
|
[torch.cat([mask] * 2) for mask in pixel_values_face_mask]
|
|
if do_classifier_free_guidance
|
|
else pixel_values_face_mask
|
|
)
|
|
pixel_values_lip_mask = (
|
|
[torch.cat([mask] * 2) for mask in pixel_values_lip_mask]
|
|
if do_classifier_free_guidance
|
|
else pixel_values_lip_mask
|
|
)
|
|
pixel_values_face_mask_ = []
|
|
for mask in pixel_values_face_mask:
|
|
pixel_values_face_mask_.append(
|
|
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype))
|
|
pixel_values_face_mask = pixel_values_face_mask_
|
|
pixel_values_lip_mask_ = []
|
|
for mask in pixel_values_lip_mask:
|
|
pixel_values_lip_mask_.append(
|
|
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype))
|
|
pixel_values_lip_mask = pixel_values_lip_mask_
|
|
pixel_values_full_mask_ = []
|
|
for mask in pixel_values_full_mask:
|
|
pixel_values_full_mask_.append(
|
|
mask.to(device=self.denoising_unet.device, dtype=self.denoising_unet.dtype))
|
|
pixel_values_full_mask = pixel_values_full_mask_
|
|
|
|
|
|
uncond_audio_tensor = torch.zeros_like(audio_tensor)
|
|
audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0)
|
|
audio_tensor = audio_tensor.to(dtype=self.denoising_unet.dtype, device=self.denoising_unet.device)
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
|
|
if i == 0:
|
|
self.reference_unet(
|
|
ref_image_latents.repeat(
|
|
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
|
),
|
|
torch.zeros_like(t),
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
return_dict=False,
|
|
)
|
|
reference_control_reader.update(reference_control_writer)
|
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
noise_pred = self.denoising_unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
mask_cond_fea=face_mask,
|
|
full_mask=pixel_values_full_mask,
|
|
face_mask=pixel_values_face_mask,
|
|
lip_mask=pixel_values_lip_mask,
|
|
audio_embedding=audio_tensor,
|
|
motion_scale=motion_scale,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
|
|
if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
reference_control_reader.clear()
|
|
reference_control_writer.clear()
|
|
|
|
|
|
images = self.decode_latents(latents)
|
|
|
|
|
|
if output_type == "tensor":
|
|
images = torch.from_numpy(images)
|
|
|
|
if not return_dict:
|
|
return images
|
|
|
|
return FaceAnimatePipelineOutput(videos=images)
|
|
|