File size: 6,562 Bytes
75f3f8a
 
 
 
09eb7a4
75f3f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09eb7a4
9b0a02b
75f3f8a
968c14a
75f3f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
8451d71
75f3f8a
 
 
 
 
ee473ce
75f3f8a
 
3a62f4c
 
 
 
 
057263b
a6f503a
75f3f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09eb7a4
4f58981
 
d2b6ec7
75f3f8a
 
 
 
 
 
09eb7a4
75f3f8a
 
1a8fa4f
75f3f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28936aa
75f3f8a
 
 
09eb7a4
fceb09f
 
 
ee473ce
75f3f8a
9b0a02b
09eb7a4
9b0a02b
462259e
 
 
 
 
 
 
fceb09f
 
 
 
efbd3a6
09eb7a4
75f3f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
09eb7a4
75f3f8a
 
 
 
 
 
 
 
 
 
09eb7a4
75f3f8a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from fastapi import FastAPI, UploadFile,File,HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from dotenv import load_dotenv
from langchain_community.document_loaders import PyMuPDFLoader, UnstructuredPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
from langchain_core.runnables import RunnablePassthrough
from pathlib import Path
import uvicorn
import shutil
import os
import hashlib
import fitz
import pytesseract
from PIL import Image
from langchain.schema import Document
from langchain_community.vectorstores import Chroma
from langchain_community.vectorstores.utils import filter_complex_metadata
import io
import chromadb

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

UPLOAD_DIR = "uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)

persist_directory = "/home/user/.cache/chroma_db"

load_dotenv()
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")

llm = ChatGroq(model_name = "qwen-2.5-32b")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

prompt = '''You are an AI assistant tasked with answering questions based on the given context.  
Follow these guidelines:  
- If the answer is **explicitly stated in the context**, provide a **concise and factual response**.  
- If the answer is **not in the context**, simply state: *"I don't know based on the provided context."*  
- If the question requires **logical reasoning** based on the context, summarize the necessary details before answering.  
- If the question is about **duration or summary**, calculate or extract the total duration and provide a brief overview. 
- If the question contains **end date** and is not found in the context, consider it as **Completion date**. 
<context>  
{context}  
</context>  
Question: {question}  
Answer:'''

parser = StrOutputParser()

def generate_file_id(file_path):   
    hasher = hashlib.md5()
    with open(file_path, "rb") as f:
        hasher.update(f.read())
    return hasher.hexdigest()

def delete_existing_embedding(file_id):
    if os.path.exists(persist_directory):
        client_settings = chromadb.config.Settings(allow_reset=True)
        vector_store = Chroma(persist_directory=persist_directory, embedding_function=embeddings,client_settings=client_settings)       
        vector_store.delete_collection()  # Drop all stored vectors

def tempUploadFile(filePath,file):
    with open(filePath,'wb') as buffer:
        shutil.copyfileobj(file.file, buffer)

def loadAndSplitDocuments(filePath):
    loader = UnstructuredPDFLoader(filePath)
    docs = loader.load()
    
    splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=500)
    final_chunks = splitter.split_documents(docs)
    return final_chunks

def loadAndSplitPdfFile(filePath):
    doc = fitz.open(filePath)
    documents = []

    for i, page in enumerate(doc):
        text = page.get_text("text")  # Extract text from page
        metadata = {"source": filePath, "page": i + 1}

        if text.strip():
            documents.append(Document(page_content=text, metadata=metadata))

        # Extract and process images with OCR
        images = page.get_images(full=True)
        for img_index, img in enumerate(images):
            xref = img[0]
            base_image = doc.extract_image(xref)
            image_bytes = base_image["image"]
            img = Image.open(io.BytesIO(image_bytes))

            # Perform OCR on the image
            ocr_text = pytesseract.image_to_string(img)
            if ocr_text.strip():
                img_metadata = metadata.copy()
                img_metadata["type"] = "image"
                img_metadata["image_index"] = img_index
                documents.append(Document(page_content=ocr_text, metadata=img_metadata))

    splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=500)
    final_chunks = splitter.split_documents(documents)
    return final_chunks

def prepare_retriever(filePath = "", load_from_chromadb = False):
    if load_from_chromadb:      
        vector_store = Chroma(persist_directory=persist_directory, embedding_function = embeddings)
        print("Total documents stored:", vector_store._collection.count())
        return vector_store.as_retriever(search_kwargs={"k": 10})    
    elif filePath:   
        doc_chunks = loadAndSplitPdfFile(filePath)        
        print(f"Loaded {len(doc_chunks)} documents from {filePath}") 
        for doc in doc_chunks:
            if hasattr(doc, "metadata") and isinstance(doc.metadata, dict):
                # Convert Path objects to strings
                doc.metadata = {
                    key: str(value) if isinstance(value, Path) else value
                    for key, value in doc.metadata.items()
                    if isinstance(value, (str, int, float, bool, Path))
                }

        client_settings = chromadb.config.Settings(
        allow_reset=True  
        )
        vector_store = Chroma.from_documents(documents= doc_chunks, persist_directory=persist_directory, embedding= embeddings)
        vector_store.persist()

def get_retriever_chain(retriever):    
    chat_prompt = ChatPromptTemplate.from_template(prompt)
    chain =({"context": retriever, "question": RunnablePassthrough()} | chat_prompt | llm | parser)
    return chain

@app.post("/UploadFileInStore")
def UploadFileInStore(file: UploadFile = File(...)):
    if not file.filename.endswith('.pdf'):
        raise HTTPException(status_code=400, detail="File must be a pdf file")
    
    filePath = Path(UPLOAD_DIR) / file.filename
    tempUploadFile(filePath,file)
    file_id = generate_file_id(filePath)
    
    delete_existing_embedding(file_id)
    prepare_retriever(filePath)
    
    if os.path.exists(filePath):  
        os.remove(filePath) 
    return JSONResponse({"message": "File uploaded successfully"})


@app.get("/QnAFromPdf")
async def QnAFromPdf(query: str):   
    retriever = prepare_retriever(load_from_chromadb=True) 
    chain = get_retriever_chain(retriever)
    response = chain.invoke(query)    
    return response

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)