Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,52 +2,54 @@ import streamlit as st
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
5 |
-
st.
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
#pickle.load(open('energy_model.pkl', 'rb'))
|
10 |
#vocab = np.load('w2i.p', allow_pickle=True)
|
|
|
|
|
11 |
#st.text("Build with Streamlit and OpenCV")
|
12 |
if "photo" not in st.session_state:
|
13 |
st.session_state["photo"]="not done"
|
14 |
-
|
15 |
c2, c3 = st.columns([2,1])
|
16 |
def change_photo_state():
|
17 |
st.session_state["photo"]="done"
|
18 |
-
print("="*150)
|
19 |
-
print("RESNET MODEL LOADED")
|
20 |
-
|
21 |
@st.cache
|
22 |
def load_image(img):
|
23 |
im = Image.open(img)
|
24 |
return im
|
25 |
uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
|
26 |
camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
|
27 |
-
st.subheader("
|
28 |
-
if st.
|
29 |
-
|
30 |
-
our_image= load_image(uploaded_photo)
|
31 |
-
elif camera_photo:
|
32 |
-
our_image= load_image(camera_photo)
|
33 |
-
elif uploaded_photo==None and camera_photo==None:
|
34 |
-
our_image= load_image('image.jpg')
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
model.to(device)
|
37 |
max_length = 16
|
38 |
num_beams = 4
|
39 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
40 |
def predict_step(our_image):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
st.
|
50 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
st.subheader("About Image Captioning App")
|
52 |
-
st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-
|
53 |
st.markdown("Demo applicaton of the following model [credit](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/)")
|
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
5 |
+
@st.cache
|
6 |
+
def load_models():
|
7 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
10 |
+
return model, feature_extractor, tokenizer
|
11 |
#pickle.load(open('energy_model.pkl', 'rb'))
|
12 |
#vocab = np.load('w2i.p', allow_pickle=True)
|
13 |
+
st.title("Image_Captioning_App")
|
14 |
+
|
15 |
#st.text("Build with Streamlit and OpenCV")
|
16 |
if "photo" not in st.session_state:
|
17 |
st.session_state["photo"]="not done"
|
|
|
18 |
c2, c3 = st.columns([2,1])
|
19 |
def change_photo_state():
|
20 |
st.session_state["photo"]="done"
|
|
|
|
|
|
|
21 |
@st.cache
|
22 |
def load_image(img):
|
23 |
im = Image.open(img)
|
24 |
return im
|
25 |
uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
|
26 |
camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
|
27 |
+
#st.subheader("Detection")
|
28 |
+
if st.checkbox("Generate_Caption"):
|
29 |
+
model, feature_extractor, tokenizer = load_models()
|
|
|
|
|
|
|
|
|
|
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
model.to(device)
|
32 |
max_length = 16
|
33 |
num_beams = 4
|
34 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
35 |
def predict_step(our_image):
|
36 |
+
if our_image.mode != "RGB":
|
37 |
+
our_image = our_image.convert(mode="RGB")
|
38 |
+
pixel_values = feature_extractor(images=our_image, return_tensors="pt").pixel_values
|
39 |
+
pixel_values = pixel_values.to(device)
|
40 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
41 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
42 |
+
preds = [pred.strip() for pred in preds]
|
43 |
+
return preds
|
44 |
+
if st.session_state["photo"]=="done":
|
45 |
+
if uploaded_photo:
|
46 |
+
our_image= load_image(uploaded_photo)
|
47 |
+
elif camera_photo:
|
48 |
+
our_image= load_image(camera_photo)
|
49 |
+
elif uploaded_photo==None and camera_photo==None:
|
50 |
+
our_image= load_image('image.jpg')
|
51 |
+
st.success(predict_step(our_image))
|
52 |
+
elif st.checkbox("About"):
|
53 |
st.subheader("About Image Captioning App")
|
54 |
+
st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-website.streamlit.app/)")
|
55 |
st.markdown("Demo applicaton of the following model [credit](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/)")
|