Spaces:
Runtime error
Runtime error
# from fastapi import FastAPI, Query, Request, HTTPException | |
# import pandas as pd | |
# import transformers as pipeline | |
# from transformers import AutoTokenizer,AutoModelForSequenceClassification | |
# from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
# model_name = "Sonny4Sonnix/twitter-roberta-base-sentimental-analysis-of-covid-tweets" | |
# model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
# app = FastAPI() | |
# @app.get("/") | |
# async def read_root(): | |
# return {"message": "Sentiment Analysis API using FastAPI"} | |
# @app.get("/analyze-sentiment/") | |
# async def analyze_sentiment(text: str = Query(..., description="Text for sentiment analysis")): | |
# result = sentiment(text) | |
# sentiment_label = result[0]['label'] | |
# sentiment_score = result[0]['score'] | |
# if sentiment_label == 'LABEL_1': | |
# sentiment_label = "positive" | |
# elif sentiment_label == 'LABEL_0': | |
# sentiment_label = "neutral" | |
# else: | |
# sentiment_label = "negative" | |
# response = { | |
# "sentiment": sentiment_label.capitalize(), | |
# "score": sentiment_score | |
# } | |
# return response | |
# if _name_ == "_main_": | |
# import uvicorn | |
# uvicorn.run(app, host="127.0.0.1", port=7860) | |
# model_name = "Sonny4Sonnix/Movie_Sentiments_Analysis_with_FastAPI" # Replace with the name of the pre-trained model you want to use | |
# model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# app = FastAPI() | |
# @app.get("/") | |
# async def read_root(): | |
# return {"message": "Welcome to the Sepsis Prediction using FastAPI"} | |
# def classify(prediction): | |
# if prediction == 0: | |
# return "Sentence is positive" | |
# else: | |
# return "Sentence is negative" | |
# @app.post("/predict/") | |
# async def predict_sepsis( | |
# request: Request, | |
# Text: float = Query(..., description="Please type a sentence"), | |
# ): | |
# input_data = [Text] | |
# input_df = pd.DataFrame([input_data], columns=[ | |
# "Text" | |
# ]) | |
# pred = model.predict(input_df) | |
# output = classify(pred[0]) | |
# response = { | |
# "prediction": output | |
# } | |
# return response | |
# # Run the app using Uvicorn | |
# if __name__ == "__main__": | |
# import uvicorn | |
# uvicorn.run(app, host="127.0.0.1", port=7860) | |
# sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |