Spaces:
Running
Running
File size: 7,999 Bytes
1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 9ee88e4 b1ae84d 7f20010 b1ae84d 1b58573 b1ae84d 9ee88e4 f56e0f7 b1ae84d 1b58573 b1ae84d 9ee88e4 b1ae84d 1b58573 f6dbb10 b1ae84d f6dbb10 b1ae84d 1b58573 9ee88e4 1b58573 b1ae84d 9ee88e4 b1ae84d 9ee88e4 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 9ee88e4 b1ae84d 9ee88e4 1b58573 f6dbb10 9ee88e4 b1ae84d 1b58573 b1ae84d 9ee88e4 b1ae84d 9ee88e4 b1ae84d 9ee88e4 b1ae84d 9ee88e4 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 9ee88e4 1b58573 9ee88e4 1b58573 f2540ce 9ee88e4 f6dbb10 9ee88e4 1b58573 b1ae84d 9ee88e4 b1ae84d 9ee88e4 b1ae84d 1b58573 b1ae84d 9ee88e4 b1ae84d 1b58573 9ee88e4 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 b1ae84d 1b58573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
from __future__ import annotations
import argparse
import functools
import html
import os
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
import piexif
import piexif.helper
import PIL.Image
from Utils import dbimutils
TITLE = "WaifuDiffusion v1.4 Tags"
DESCRIPTION = """
Demo for:
- [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
- [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
- [SmilingWolf/wd-v1-4-vit-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2)
Includes "ready to copy" prompt and a prompt analyzer.
Modified from [NoCrypt/DeepDanbooru_string](https://huggingface.co/spaces/NoCrypt/DeepDanbooru_string)
Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
"""
HF_TOKEN = os.environ["HF_TOKEN"]
SWIN_MODEL_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
VIT_MODEL_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--score-general-threshold", type=float, default=0.35)
parser.add_argument("--score-character-threshold", type=float, default=0.85)
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def load_model(model_repo: str, model_filename: str) -> rt.InferenceSession:
path = huggingface_hub.hf_hub_download(
model_repo, model_filename, use_auth_token=HF_TOKEN
)
model = rt.InferenceSession(path)
return model
def change_model(model_name):
global loaded_models
if model_name == "SwinV2":
model = load_model(SWIN_MODEL_REPO, MODEL_FILENAME)
elif model_name == "ConvNext":
model = load_model(CONV_MODEL_REPO, MODEL_FILENAME)
elif model_name == "ViT":
model = load_model(VIT_MODEL_REPO, MODEL_FILENAME)
loaded_models[model_name] = model
return loaded_models[model_name]
def load_labels() -> list[str]:
path = huggingface_hub.hf_hub_download(
SWIN_MODEL_REPO, LABEL_FILENAME, use_auth_token=HF_TOKEN
)
df = pd.read_csv(path)
tag_names = df["name"].tolist()
rating_indexes = list(np.where(df["category"] == 9)[0])
general_indexes = list(np.where(df["category"] == 0)[0])
character_indexes = list(np.where(df["category"] == 4)[0])
return tag_names, rating_indexes, general_indexes, character_indexes
def plaintext_to_html(text):
text = (
"<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split("\n")]) + "</p>"
)
return text
def predict(
image: PIL.Image.Image,
model_name: str,
general_threshold: float,
character_threshold: float,
tag_names: list[str],
rating_indexes: list[np.int64],
general_indexes: list[np.int64],
character_indexes: list[np.int64],
):
global loaded_models
rawimage = image
model = loaded_models[model_name]
if model is None:
model = change_model(model_name)
_, height, width, _ = model.get_inputs()[0].shape
# Alpha to white
image = image.convert("RGBA")
new_image = PIL.Image.new("RGBA", image.size, "WHITE")
new_image.paste(image, mask=image)
image = new_image.convert("RGB")
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = dbimutils.make_square(image, height)
image = dbimutils.smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
input_name = model.get_inputs()[0].name
label_name = model.get_outputs()[0].name
probs = model.run([label_name], {input_name: image})[0]
labels = list(zip(tag_names, probs[0].astype(float)))
# First 4 labels are actually ratings: pick one with argmax
ratings_names = [labels[i] for i in rating_indexes]
rating = dict(ratings_names)
# Then we have general tags: pick any where prediction confidence > threshold
general_names = [labels[i] for i in general_indexes]
general_res = [x for x in general_names if x[1] > general_threshold]
general_res = dict(general_res)
# Everything else is characters: pick any where prediction confidence > threshold
character_names = [labels[i] for i in character_indexes]
character_res = [x for x in character_names if x[1] > character_threshold]
character_res = dict(character_res)
b = dict(sorted(general_res.items(), key=lambda item: item[1], reverse=True))
a = (
", ".join(list(b.keys()))
.replace("_", " ")
.replace("(", "\(")
.replace(")", "\)")
)
c = ", ".join(list(b.keys()))
items = rawimage.info
geninfo = ""
if "exif" in rawimage.info:
exif = piexif.load(rawimage.info["exif"])
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b"")
try:
exif_comment = piexif.helper.UserComment.load(exif_comment)
except ValueError:
exif_comment = exif_comment.decode("utf8", errors="ignore")
items["exif comment"] = exif_comment
geninfo = exif_comment
for field in [
"jfif",
"jfif_version",
"jfif_unit",
"jfif_density",
"dpi",
"exif",
"loop",
"background",
"timestamp",
"duration",
]:
items.pop(field, None)
geninfo = items.get("parameters", geninfo)
info = f"""
<p><h4>PNG Info</h4></p>
"""
for key, text in items.items():
info += (
f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()
+ "\n"
)
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return (a, c, rating, character_res, general_res, info)
def main():
global loaded_models
loaded_models = {"SwinV2": None, "ConvNext": None, "ViT": None}
args = parse_args()
change_model("SwinV2")
tag_names, rating_indexes, general_indexes, character_indexes = load_labels()
func = functools.partial(
predict,
tag_names=tag_names,
rating_indexes=rating_indexes,
general_indexes=general_indexes,
character_indexes=character_indexes,
)
gr.Interface(
fn=func,
inputs=[
gr.Image(type="pil", label="Input"),
gr.Radio(["SwinV2", "ConvNext", "ViT"], value="SwinV2", label="Model"),
gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_general_threshold,
label="General Tags Threshold",
),
gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_character_threshold,
label="Character Tags Threshold",
),
],
outputs=[
gr.Textbox(label="Output (string)"),
gr.Textbox(label="Output (raw string)"),
gr.Label(label="Rating"),
gr.Label(label="Output (characters)"),
gr.Label(label="Output (tags)"),
gr.HTML(),
],
examples=[["power.jpg", "SwinV2", 0.5]],
title=TITLE,
description=DESCRIPTION,
allow_flagging="never",
).launch(
enable_queue=True,
share=args.share,
)
if __name__ == "__main__":
main()
|