Spaces:
Running
Running
""" | |
Question Answering with Retrieval QA and LangChain Language Models featuring Chroma Vector Stores | |
This script uses the LangChain Language Model API to answer questions using Retrieval QA and Chroma Vector Stores. | |
""" | |
import os | |
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from htmlTemplates import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
def get_pdf_text(pdf_docs): | |
""" | |
Extract text from a list of PDF documents. | |
Parameters | |
---------- | |
pdf_docs : list | |
List of PDF documents to extract text from. | |
Returns | |
------- | |
str | |
Extracted text from all the PDF documents. | |
""" | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
""" | |
Split the input text into chunks. | |
Parameters | |
---------- | |
text : str | |
The input text to be split. | |
Returns | |
------- | |
list | |
List of text chunks. | |
""" | |
text_splitter = CharacterTextSplitter( | |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
""" | |
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings. | |
Parameters | |
---------- | |
text_chunks : list | |
List of text chunks to be embedded. | |
Returns | |
------- | |
FAISS | |
A FAISS vector store containing the embeddings of the text chunks. | |
""" | |
# embeddings = OpenAIEmbeddings() | |
model = "BAAI/bge-base-en-v1.5" | |
encode_kwargs = { | |
"normalize_embeddings": True | |
} # set True to compute cosine similarity | |
embeddings = HuggingFaceBgeEmbeddings( | |
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} | |
) | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
""" | |
Create a conversational retrieval chain using a vector store and a language model. | |
Parameters | |
---------- | |
vectorstore : FAISS | |
A FAISS vector store containing the embeddings of the text chunks. | |
Returns | |
------- | |
ConversationalRetrievalChain | |
A conversational retrieval chain for generating responses. | |
""" | |
llm = HuggingFaceHub( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.1", | |
model_kwargs={"temperature": 0.5, "max_length": 512}, | |
) | |
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, retriever=vectorstore.as_retriever(), memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
""" | |
Handle user input and generate a response using the conversational retrieval chain. | |
Parameters | |
---------- | |
user_question : str | |
The user's question. | |
""" | |
response = st.session_state.conversation({"question": user_question}) | |
st.session_state.chat_history = response["chat_history"] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write( | |
user_template.replace("{{MSG}}", message.content), | |
unsafe_allow_html=True, | |
) | |
else: | |
st.write( | |
bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True | |
) | |
def main(): | |
st.set_page_config( | |
page_title="Chat with a Bot that tries to answer questions about multiple PDFs", | |
page_icon=":books:", | |
) | |
st.markdown("# Chat with a Bot") | |
st.markdown("This bot tries to answer questions about multiple PDFs.") | |
st.write(css, unsafe_allow_html=True) | |
# set huggingface hub token in st.text_input widget | |
# then hide the input | |
huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password") | |
#openai_api_key = st.text_input("Enter your OpenAI API key", type="password") | |
# set this key as an environment variable | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token | |
#os.environ["OPENAI_API_KEY"] = openai_api_key | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True | |
) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
if __name__ == "__main__": | |
main() | |