Spaces:
Build error
Build error
from datetime import datetime as dt | |
from pathlib import Path | |
import click | |
from loguru import logger | |
from llm_engineering import settings | |
from pipelines import ( | |
digital_data_etl, | |
end_to_end_data, | |
evaluating, | |
export_artifact_to_json, | |
feature_engineering, | |
generate_datasets, | |
training, | |
) | |
from clearml import PipelineDecorator | |
import yaml | |
from pathlib import Path | |
def parse_yaml_config(config_path): | |
"""Parse YAML config file.""" | |
with open(config_path, 'r') as file: | |
config = yaml.safe_load(file) | |
return config | |
def main( | |
no_cache: bool = False, | |
run_end_to_end_data: bool = False, | |
run_etl: bool = False, | |
etl_config_filename: str = "digital_data_etl_cs370.yaml", | |
run_export_artifact_to_json: bool = False, | |
run_feature_engineering: bool = False, | |
run_generate_instruct_datasets: bool = False, | |
run_generate_preference_datasets: bool = False, | |
run_training: bool = False, | |
run_evaluation: bool = False, | |
export_settings: bool = False, | |
) -> None: | |
assert ( | |
run_end_to_end_data | |
or run_etl | |
or run_export_artifact_to_json | |
or run_feature_engineering | |
or run_generate_instruct_datasets | |
or run_generate_preference_datasets | |
or run_training | |
or run_evaluation | |
or export_settings | |
), "Please specify an action to run." | |
if export_settings: | |
logger.info("Exporting settings to ZenML secrets.") | |
settings.export() | |
pipeline_args = { | |
"enable_cache": not no_cache, | |
} | |
root_dir = Path(__file__).resolve().parent.parent | |
PipelineDecorator.run_locally() | |
if run_end_to_end_data: | |
run_args_end_to_end = {} | |
pipeline_args["config_path"] = root_dir / "configs" / "end_to_end_data.yaml" | |
assert pipeline_args["config_path"].exists(), f"Config file not found: {pipeline_args['config_path']}" | |
pipeline_args["run_name"] = f"end_to_end_data_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_end_to_end = parse_yaml_config(pipeline_args["config_path"]) | |
end_to_end_data(**run_args_end_to_end.get("parameters")) | |
if run_etl: | |
run_args_etl = {} | |
pipeline_args["config_path"] = root_dir / "configs" / etl_config_filename | |
assert pipeline_args["config_path"].exists(), f"Config file not found: {pipeline_args['config_path']}" | |
pipeline_args["run_name"] = f"digital_data_etl_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_etl = parse_yaml_config(pipeline_args["config_path"]) | |
digital_data_etl(**run_args_etl.get("parameters")) | |
if run_export_artifact_to_json: | |
run_args_etl = {} | |
pipeline_args["config_path"] = root_dir / "configs" / "export_artifact_to_json.yaml" | |
assert pipeline_args["config_path"].exists(), f"Config file not found: {pipeline_args['config_path']}" | |
pipeline_args["run_name"] = f"export_artifact_to_json_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_etl = parse_yaml_config(pipeline_args["config_path"]) | |
export_artifact_to_json(**run_args_etl.get("parameters")) | |
if run_feature_engineering: | |
run_args_fe = {} | |
pipeline_args["config_path"] = root_dir / "configs" / "feature_engineering.yaml" | |
pipeline_args["run_name"] = f"feature_engineering_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_fe = parse_yaml_config(pipeline_args["config_path"]) | |
logger.warning(pipeline_args) | |
logger.warning(run_args_fe) | |
feature_engineering(**run_args_fe.get("parameters")) | |
if run_generate_instruct_datasets: | |
run_args_cd = {} | |
pipeline_args["config_path"] = root_dir / "configs" / "generate_instruct_datasets.yaml" | |
pipeline_args["run_name"] = f"generate_instruct_datasets_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_cd = parse_yaml_config(pipeline_args["config_path"]) | |
generate_datasets(**run_args_cd.get("parameters")) | |
if run_generate_preference_datasets: | |
run_args_cd = {} | |
pipeline_args["config_path"] = root_dir / "configs" / "generate_preference_datasets.yaml" | |
pipeline_args["run_name"] = f"generate_preference_datasets_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_cd = parse_yaml_config(pipeline_args["config_path"]) | |
generate_datasets(**run_args_cd.get("parameters")) | |
if run_training: | |
run_args_cd = {} | |
pipeline_args["config_path"] = root_dir / "configs" / "training.yaml" | |
pipeline_args["run_name"] = f"training_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_cd = parse_yaml_config(pipeline_args["config_path"]) | |
training(**run_args_cd.get("parameters")) | |
if run_evaluation: | |
run_args_cd = {} | |
pipeline_args["config_path"] = root_dir / "configs" / "evaluating.yaml" | |
pipeline_args["run_name"] = f"evaluation_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}" | |
run_args_cd = parse_yaml_config(pipeline_args["config_path"]) | |
evaluating(**run_args_cd.get("parameters")) | |
if __name__ == "__main__": | |
main() | |