florence-sam / app.py
SkalskiP's picture
update device to CUDA
d1212b2
raw
history blame
3.68 kB
from typing import Tuple, Optional
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from utils.florence import load_florence_model, run_florence_inference, \
FLORENCE_DETAILED_CAPTION_TASK, \
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK
from utils.sam import load_sam_model
MARKDOWN = """
# Florence2 + SAM2 🔥
This demo integrates Florence2 and SAM2 models for detailed image captioning and object
detection. Florence2 generates detailed captions that are then used to perform phrase
grounding. The Segment Anything Model 2 (SAM2) converts these phrase-grounded boxes
into masks.
"""
EXAMPLES = [
"https://media.roboflow.com/notebooks/examples/dog-2.jpeg",
"https://media.roboflow.com/notebooks/examples/dog-3.jpeg",
"https://media.roboflow.com/notebooks/examples/dog-4.jpeg"
]
DEVICE = torch.device("cuda")
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_MODEL = load_sam_model(device=DEVICE)
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
LABEL_ANNOTATOR = sv.LabelAnnotator(
color_lookup=sv.ColorLookup.INDEX,
text_position=sv.Position.CENTER_OF_MASS,
text_color=sv.Color.BLACK,
border_radius=5
)
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
def process(
image_input,
) -> Tuple[Optional[Image.Image], Optional[str]]:
if image_input is None:
return None, None
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_DETAILED_CAPTION_TASK
)
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
text=caption
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
image = np.array(image_input.convert("RGB"))
SAM_MODEL.set_image(image)
mask, score, _ = SAM_MODEL.predict(box=detections.xyxy, multimask_output=False)
# dirty fix; remove this later
if len(mask.shape) == 4:
mask = np.squeeze(mask)
detections.mask = mask.astype(bool)
output_image = image_input.copy()
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
return output_image, caption
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
submit_button_component = gr.Button(value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image output')
text_output_component = gr.Textbox(label='Caption output')
submit_button_component.click(
fn=process,
inputs=[image_input_component],
outputs=[
image_output_component,
text_output_component
]
)
with gr.Row():
gr.Examples(
fn=process,
examples=EXAMPLES,
inputs=[image_input_component],
outputs=[
image_output_component,
text_output_component
],
run_on_click=True
)
demo.launch(debug=False, show_error=True, max_threads=1)