Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple, Optional | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
import torch | |
from PIL import Image | |
from utils.florence import load_florence_model, run_florence_inference, \ | |
FLORENCE_DETAILED_CAPTION_TASK, \ | |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK | |
from utils.sam import load_sam_model | |
MARKDOWN = """ | |
# Florence2 + SAM2 🔥 | |
This demo integrates Florence2 and SAM2 models for detailed image captioning and object | |
detection. Florence2 generates detailed captions that are then used to perform phrase | |
grounding. The Segment Anything Model 2 (SAM2) converts these phrase-grounded boxes | |
into masks. | |
""" | |
EXAMPLES = [ | |
"https://media.roboflow.com/notebooks/examples/dog-2.jpeg", | |
"https://media.roboflow.com/notebooks/examples/dog-3.jpeg", | |
"https://media.roboflow.com/notebooks/examples/dog-4.jpeg" | |
] | |
DEVICE = torch.device("cuda") | |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE) | |
SAM_MODEL = load_sam_model(device=DEVICE) | |
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
LABEL_ANNOTATOR = sv.LabelAnnotator( | |
color_lookup=sv.ColorLookup.INDEX, | |
text_position=sv.Position.CENTER_OF_MASS, | |
text_color=sv.Color.BLACK, | |
border_radius=5 | |
) | |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
def process( | |
image_input, | |
) -> Tuple[Optional[Image.Image], Optional[str]]: | |
if image_input is None: | |
return None, None | |
_, result = run_florence_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_DETAILED_CAPTION_TASK | |
) | |
caption = result[FLORENCE_DETAILED_CAPTION_TASK] | |
_, result = run_florence_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, | |
text=caption | |
) | |
detections = sv.Detections.from_lmm( | |
lmm=sv.LMM.FLORENCE_2, | |
result=result, | |
resolution_wh=image_input.size | |
) | |
image = np.array(image_input.convert("RGB")) | |
SAM_MODEL.set_image(image) | |
mask, score, _ = SAM_MODEL.predict(box=detections.xyxy, multimask_output=False) | |
# dirty fix; remove this later | |
if len(mask.shape) == 4: | |
mask = np.squeeze(mask) | |
detections.mask = mask.astype(bool) | |
output_image = image_input.copy() | |
output_image = MASK_ANNOTATOR.annotate(output_image, detections) | |
output_image = BOX_ANNOTATOR.annotate(output_image, detections) | |
output_image = LABEL_ANNOTATOR.annotate(output_image, detections) | |
return output_image, caption | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(): | |
image_input_component = gr.Image( | |
type='pil', label='Upload image') | |
submit_button_component = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
image_output_component = gr.Image(type='pil', label='Image output') | |
text_output_component = gr.Textbox(label='Caption output') | |
submit_button_component.click( | |
fn=process, | |
inputs=[image_input_component], | |
outputs=[ | |
image_output_component, | |
text_output_component | |
] | |
) | |
with gr.Row(): | |
gr.Examples( | |
fn=process, | |
examples=EXAMPLES, | |
inputs=[image_input_component], | |
outputs=[ | |
image_output_component, | |
text_output_component | |
], | |
run_on_click=True | |
) | |
demo.launch(debug=False, show_error=True, max_threads=1) | |