File size: 14,678 Bytes
488d99e
2fbf361
baea9b2
488d99e
baea9b2
488d99e
 
baea9b2
 
 
488d99e
 
baea9b2
2fbf361
 
576e22a
488d99e
 
 
baea9b2
 
2fbf361
 
ae5c0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488d99e
baea9b2
 
488d99e
 
 
 
 
2fbf361
 
488d99e
 
 
 
d1212b2
488d99e
 
 
 
 
 
 
 
2fbf361
488d99e
 
 
 
 
2fbf361
488d99e
2fbf361
 
488d99e
2fbf361
 
488d99e
 
 
 
baea9b2
 
576e22a
 
 
 
 
 
2fbf361
 
576e22a
 
488d99e
 
576e22a
2fbf361
baea9b2
488d99e
 
 
 
576e22a
 
 
488d99e
576e22a
 
488d99e
576e22a
488d99e
576e22a
 
488d99e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576e22a
 
488d99e
576e22a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488d99e
576e22a
baea9b2
 
488d99e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baea9b2
 
488d99e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fbf361
488d99e
 
 
 
 
 
 
 
 
 
 
 
baea9b2
488d99e
 
576e22a
488d99e
 
 
576e22a
 
488d99e
 
576e22a
 
488d99e
 
 
 
 
 
 
 
 
 
 
 
 
576e22a
488d99e
576e22a
488d99e
 
576e22a
 
488d99e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
576e22a
5ae5bca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
from typing import Tuple, Optional

import cv2
import gradio as gr
import numpy as np
import spaces
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from utils.video import generate_unique_name, create_directory, delete_directory

from utils.florence import load_florence_model, run_florence_inference, \
    FLORENCE_DETAILED_CAPTION_TASK, \
    FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.modes import IMAGE_INFERENCE_MODES, IMAGE_OPEN_VOCABULARY_DETECTION_MODE, \
    IMAGE_CAPTION_GROUNDING_MASKS_MODE, VIDEO_INFERENCE_MODES
from utils.sam import load_sam_image_model, run_sam_inference, load_sam_video_model

MARKDOWN = """
# Florence2 + SAM2 🔥

<div>
    <a href="https://github.com/facebookresearch/segment-anything-2">
        <img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
    </a>
    <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
        <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
    </a>
    <a href="https://blog.roboflow.com/what-is-segment-anything-2/">
        <img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
    </a>
    <a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
        <img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
    </a>
</div>

This demo integrates Florence2 and SAM2 by creating a two-stage inference pipeline. In 
the first stage, Florence2 performs tasks such as object detection, open-vocabulary 
object detection, image captioning, or phrase grounding. In the second stage, SAM2 
performs object segmentation on the image.
"""

IMAGE_PROCESSING_EXAMPLES = [
    [IMAGE_OPEN_VOCABULARY_DETECTION_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw, white napkin, black napkin, dog, hair, man'],
    [IMAGE_OPEN_VOCABULARY_DETECTION_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
    [IMAGE_CAPTION_GROUNDING_MASKS_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
    [IMAGE_CAPTION_GROUNDING_MASKS_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
]

VIDEO_SCALE_FACTOR = 0.5
VIDEO_TARGET_DIRECTORY = "tmp"
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)

DEVICE = torch.device("cuda")
# DEVICE = torch.device("cpu")

torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True


FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
SAM_VIDEO_MODEL = load_sam_video_model(device=DEVICE)
COLORS = ['#FF1493', '#00BFFF', '#FF6347', '#FFD700', '#32CD32', '#8A2BE2']
COLOR_PALETTE = sv.ColorPalette.from_hex(COLORS)
BOX_ANNOTATOR = sv.BoxAnnotator(color=COLOR_PALETTE, color_lookup=sv.ColorLookup.INDEX)
LABEL_ANNOTATOR = sv.LabelAnnotator(
    color=COLOR_PALETTE,
    color_lookup=sv.ColorLookup.INDEX,
    text_position=sv.Position.CENTER_OF_MASS,
    text_color=sv.Color.from_hex("#000000"),
    border_radius=5
)
MASK_ANNOTATOR = sv.MaskAnnotator(
    color=COLOR_PALETTE,
    color_lookup=sv.ColorLookup.INDEX
)


def annotate_image(image, detections):
    output_image = image.copy()
    output_image = MASK_ANNOTATOR.annotate(output_image, detections)
    output_image = BOX_ANNOTATOR.annotate(output_image, detections)
    output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
    return output_image


def on_mode_dropdown_change(text):
    return [
        gr.Textbox(visible=text == IMAGE_OPEN_VOCABULARY_DETECTION_MODE),
        gr.Textbox(visible=text == IMAGE_CAPTION_GROUNDING_MASKS_MODE),
    ]


@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process_image(
    mode_dropdown, image_input, text_input
) -> Tuple[Optional[Image.Image], Optional[str]]:
    if not image_input:
        gr.Info("Please upload an image.")
        return None, None

    if mode_dropdown == IMAGE_OPEN_VOCABULARY_DETECTION_MODE:
        if not text_input:
            gr.Info("Please enter a text prompt.")
            return None, None

        texts = [prompt.strip() for prompt in text_input.split(",")]
        detections_list = []
        for text in texts:
            _, result = run_florence_inference(
                model=FLORENCE_MODEL,
                processor=FLORENCE_PROCESSOR,
                device=DEVICE,
                image=image_input,
                task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
                text=text
            )
            detections = sv.Detections.from_lmm(
                lmm=sv.LMM.FLORENCE_2,
                result=result,
                resolution_wh=image_input.size
            )
            detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
            detections_list.append(detections)

        detections = sv.Detections.merge(detections_list)
        detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
        return annotate_image(image_input, detections), None

    if mode_dropdown == IMAGE_CAPTION_GROUNDING_MASKS_MODE:
        _, result = run_florence_inference(
            model=FLORENCE_MODEL,
            processor=FLORENCE_PROCESSOR,
            device=DEVICE,
            image=image_input,
            task=FLORENCE_DETAILED_CAPTION_TASK
        )
        caption = result[FLORENCE_DETAILED_CAPTION_TASK]
        _, result = run_florence_inference(
            model=FLORENCE_MODEL,
            processor=FLORENCE_PROCESSOR,
            device=DEVICE,
            image=image_input,
            task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
            text=caption
        )
        detections = sv.Detections.from_lmm(
            lmm=sv.LMM.FLORENCE_2,
            result=result,
            resolution_wh=image_input.size
        )
        detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
        return annotate_image(image_input, detections), caption


@spaces.GPU(duration=300)
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process_video(
    mode_dropdown, video_input, text_input, progress=gr.Progress(track_tqdm=True)
) -> Optional[str]:
    if not video_input:
        gr.Info("Please upload a video.")
        return None

    if not text_input:
        gr.Info("Please enter a text prompt.")
        return None

    frame_generator = sv.get_video_frames_generator(video_input)
    frame = next(frame_generator)
    frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

    texts = [prompt.strip() for prompt in text_input.split(",")]
    detections_list = []
    for text in texts:
        _, result = run_florence_inference(
            model=FLORENCE_MODEL,
            processor=FLORENCE_PROCESSOR,
            device=DEVICE,
            image=frame,
            task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
            text=text
        )
        detections = sv.Detections.from_lmm(
            lmm=sv.LMM.FLORENCE_2,
            result=result,
            resolution_wh=frame.size
        )
        detections = run_sam_inference(SAM_IMAGE_MODEL, frame, detections)
        detections_list.append(detections)

    detections = sv.Detections.merge(detections_list)
    detections = run_sam_inference(SAM_IMAGE_MODEL, frame, detections)

    if len(detections.mask) == 0:
        gr.Info(
            "No objects of class {text_input} found in the first frame of the video. "
            "Trim the video to make the object appear in the first frame or try a "
            "different text prompt."
        )
        return None

    name = generate_unique_name()
    frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
    frames_sink = sv.ImageSink(
        target_dir_path=frame_directory_path,
        image_name_pattern="{:05d}.jpeg"
    )

    video_info = sv.VideoInfo.from_video_path(video_input)
    video_info.width = int(video_info.width * VIDEO_SCALE_FACTOR)
    video_info.height = int(video_info.height * VIDEO_SCALE_FACTOR)

    frames_generator = sv.get_video_frames_generator(video_input)
    with frames_sink:
        for frame in tqdm(
                frames_generator,
                total=video_info.total_frames,
                desc="splitting video into frames"
        ):
            frame = sv.scale_image(frame, VIDEO_SCALE_FACTOR)
            frames_sink.save_image(frame)

    inference_state = SAM_VIDEO_MODEL.init_state(
        video_path=frame_directory_path,
        device=DEVICE
    )

    for mask_index, mask in enumerate(detections.mask):
        _, object_ids, mask_logits = SAM_VIDEO_MODEL.add_new_mask(
            inference_state=inference_state,
            frame_idx=0,
            obj_id=mask_index,
            mask=mask
        )

    video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
    frames_generator = sv.get_video_frames_generator(video_input)
    masks_generator = SAM_VIDEO_MODEL.propagate_in_video(inference_state)
    with sv.VideoSink(video_path, video_info=video_info) as sink:
        for frame, (_, tracker_ids, mask_logits) in zip(frames_generator, masks_generator):
            frame = sv.scale_image(frame, VIDEO_SCALE_FACTOR)
            masks = (mask_logits > 0.0).cpu().numpy().astype(bool)
            if len(masks.shape) == 4:
                masks = np.squeeze(masks, axis=1)

            detections = sv.Detections(
                xyxy=sv.mask_to_xyxy(masks=masks),
                mask=masks,
                class_id=np.array(tracker_ids)
            )
            annotated_frame = frame.copy()
            annotated_frame = MASK_ANNOTATOR.annotate(
                scene=annotated_frame, detections=detections)
            annotated_frame = BOX_ANNOTATOR.annotate(
                scene=annotated_frame, detections=detections)
            sink.write_frame(annotated_frame)

    delete_directory(frame_directory_path)
    return video_path


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Tab("Image"):
        image_processing_mode_dropdown_component = gr.Dropdown(
            choices=IMAGE_INFERENCE_MODES,
            value=IMAGE_INFERENCE_MODES[0],
            label="Mode",
            info="Select a mode to use.",
            interactive=True
        )
        with gr.Row():
            with gr.Column():
                image_processing_image_input_component = gr.Image(
                    type='pil', label='Upload image')
                image_processing_text_input_component = gr.Textbox(
                    label='Text prompt',
                    placeholder='Enter comma separated text prompts')
                image_processing_submit_button_component = gr.Button(
                    value='Submit', variant='primary')
            with gr.Column():
                image_processing_image_output_component = gr.Image(
                    type='pil', label='Image output')
                image_processing_text_output_component = gr.Textbox(
                    label='Caption output', visible=False)

        with gr.Row():
            gr.Examples(
                fn=process_image,
                examples=IMAGE_PROCESSING_EXAMPLES,
                inputs=[
                    image_processing_mode_dropdown_component,
                    image_processing_image_input_component,
                    image_processing_text_input_component
                ],
                outputs=[
                    image_processing_image_output_component,
                    image_processing_text_output_component
                ],
                run_on_click=True
            )
    with gr.Tab("Video"):
        video_processing_mode_dropdown_component = gr.Dropdown(
            choices=VIDEO_INFERENCE_MODES,
            value=VIDEO_INFERENCE_MODES[0],
            label="Mode",
            info="Select a mode to use.",
            interactive=True
        )
        with gr.Row():
            with gr.Column():
                video_processing_video_input_component = gr.Video(
                    label='Upload video')
                video_processing_text_input_component = gr.Textbox(
                    label='Text prompt',
                    placeholder='Enter comma separated text prompts')
                video_processing_submit_button_component = gr.Button(
                    value='Submit', variant='primary')
            with gr.Column():
                video_processing_video_output_component = gr.Video(
                    label='Video output')

    image_processing_submit_button_component.click(
        fn=process_image,
        inputs=[
            image_processing_mode_dropdown_component,
            image_processing_image_input_component,
            image_processing_text_input_component
        ],
        outputs=[
            image_processing_image_output_component,
            image_processing_text_output_component
        ]
    )
    image_processing_text_input_component.submit(
        fn=process_image,
        inputs=[
            image_processing_mode_dropdown_component,
            image_processing_image_input_component,
            image_processing_text_input_component
        ],
        outputs=[
            image_processing_image_output_component,
            image_processing_text_output_component
        ]
    )
    image_processing_mode_dropdown_component.change(
        on_mode_dropdown_change,
        inputs=[image_processing_mode_dropdown_component],
        outputs=[
            image_processing_text_input_component,
            image_processing_text_output_component
        ]
    )
    video_processing_submit_button_component.click(
        fn=process_video,
        inputs=[
            video_processing_mode_dropdown_component,
            video_processing_video_input_component,
            video_processing_text_input_component
        ],
        outputs=video_processing_video_output_component
    )
    video_processing_text_input_component.submit(
        fn=process_video,
        inputs=[
            video_processing_mode_dropdown_component,
            video_processing_video_input_component,
            video_processing_text_input_component
        ],
        outputs=video_processing_video_output_component
    )

demo.launch(debug=False, show_error=True)