SkalskiP commited on
Commit
902e7a4
·
1 Parent(s): 6dac21d
Files changed (1) hide show
  1. app.py +15 -21
app.py CHANGED
@@ -94,7 +94,6 @@ def process(
94
  image = image.resize((width, height), Image.LANCZOS)
95
 
96
  if segmentation_prompt_text:
97
- print('FLORENCE INFERENCE STARTED')
98
  _, result = run_florence_inference(
99
  model=FLORENCE_MODEL,
100
  processor=FLORENCE_PROCESSOR,
@@ -108,10 +107,7 @@ def process(
108
  result=result,
109
  resolution_wh=image.size
110
  )
111
- print('FLORENCE INFERENCE DONE')
112
- print('SAM INFERENCE STARTED')
113
  detections = run_sam_inference(SAM_IMAGE_MODEL, image, detections)
114
- print('SAM INFERENCE DONE')
115
 
116
  if len(detections) == 0:
117
  gr.Info(f"{segmentation_prompt_text} prompt did not return any detections.")
@@ -122,23 +118,21 @@ def process(
122
  mask = mask.resize((width, height), Image.LANCZOS)
123
  mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
124
 
125
- return image, mask
126
-
127
- # if randomize_seed_checkbox:
128
- # seed_slicer = random.randint(0, MAX_SEED)
129
- # generator = torch.Generator().manual_seed(seed_slicer)
130
- # result = FLUX_INPAINTING_PIPELINE(
131
- # prompt=inpainting_prompt_text,
132
- # image=image,
133
- # mask_image=mask,
134
- # width=width,
135
- # height=height,
136
- # strength=strength_slider,
137
- # generator=generator,
138
- # num_inference_steps=num_inference_steps_slider
139
- # ).images[0]
140
- # print('INFERENCE DONE')
141
- # return result, mask
142
 
143
 
144
  with gr.Blocks() as demo:
 
94
  image = image.resize((width, height), Image.LANCZOS)
95
 
96
  if segmentation_prompt_text:
 
97
  _, result = run_florence_inference(
98
  model=FLORENCE_MODEL,
99
  processor=FLORENCE_PROCESSOR,
 
107
  result=result,
108
  resolution_wh=image.size
109
  )
 
 
110
  detections = run_sam_inference(SAM_IMAGE_MODEL, image, detections)
 
111
 
112
  if len(detections) == 0:
113
  gr.Info(f"{segmentation_prompt_text} prompt did not return any detections.")
 
118
  mask = mask.resize((width, height), Image.LANCZOS)
119
  mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
120
 
121
+ if randomize_seed_checkbox:
122
+ seed_slicer = random.randint(0, MAX_SEED)
123
+ generator = torch.Generator().manual_seed(seed_slicer)
124
+ result = FLUX_INPAINTING_PIPELINE(
125
+ prompt=inpainting_prompt_text,
126
+ image=image,
127
+ mask_image=mask,
128
+ width=width,
129
+ height=height,
130
+ strength=strength_slider,
131
+ generator=generator,
132
+ num_inference_steps=num_inference_steps_slider
133
+ ).images[0]
134
+ print('INFERENCE DONE')
135
+ return result, mask
 
 
136
 
137
 
138
  with gr.Blocks() as demo: