Spaces:
Running
on
Zero
Running
on
Zero
Revert "debug"
Browse filesThis reverts commit d888127630af789707b06637cd9a40ca805139a5.
app.py
CHANGED
@@ -23,8 +23,8 @@ for taking it to the next level by enabling inpainting with the FLUX.
|
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
IMAGE_SIZE = 1024
|
26 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
|
28 |
|
29 |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
30 |
if torch.cuda.get_device_properties(0).major >= 8:
|
@@ -57,12 +57,6 @@ def resize_image_dimensions(
|
|
57 |
return new_width, new_height
|
58 |
|
59 |
|
60 |
-
def is_image_empty(image: Image.Image) -> bool:
|
61 |
-
gray_img = image.convert("L")
|
62 |
-
pixels = list(gray_img.getdata())
|
63 |
-
return all(pixel == 0 for pixel in pixels)
|
64 |
-
|
65 |
-
|
66 |
@spaces.GPU(duration=150)
|
67 |
@torch.inference_mode()
|
68 |
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
@@ -87,11 +81,11 @@ def process(
|
|
87 |
gr.Info("Please upload an image.")
|
88 |
return None, None
|
89 |
|
90 |
-
if
|
91 |
gr.Info("Please draw a mask or enter a segmentation prompt.")
|
92 |
return None, None
|
93 |
|
94 |
-
if
|
95 |
gr.Info("Both mask and segmentation prompt are provided. Please provide only "
|
96 |
"one.")
|
97 |
return None, None
|
@@ -128,23 +122,23 @@ def process(
|
|
128 |
mask = mask.resize((width, height), Image.LANCZOS)
|
129 |
mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
if randomize_seed_checkbox:
|
134 |
-
|
135 |
-
generator = torch.Generator().manual_seed(seed_slicer)
|
136 |
-
result = FLUX_INPAINTING_PIPELINE(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
).images[0]
|
146 |
-
print('INFERENCE DONE')
|
147 |
-
return result, mask
|
148 |
|
149 |
|
150 |
with gr.Blocks() as demo:
|
|
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
IMAGE_SIZE = 1024
|
26 |
+
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
DEVICE = torch.device("cuda")
|
28 |
|
29 |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
30 |
if torch.cuda.get_device_properties(0).major >= 8:
|
|
|
57 |
return new_width, new_height
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
@spaces.GPU(duration=150)
|
61 |
@torch.inference_mode()
|
62 |
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
|
|
81 |
gr.Info("Please upload an image.")
|
82 |
return None, None
|
83 |
|
84 |
+
if not mask and not segmentation_prompt_text:
|
85 |
gr.Info("Please draw a mask or enter a segmentation prompt.")
|
86 |
return None, None
|
87 |
|
88 |
+
if mask and segmentation_prompt_text:
|
89 |
gr.Info("Both mask and segmentation prompt are provided. Please provide only "
|
90 |
"one.")
|
91 |
return None, None
|
|
|
122 |
mask = mask.resize((width, height), Image.LANCZOS)
|
123 |
mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
|
124 |
|
125 |
+
return image, mask
|
126 |
+
|
127 |
+
# if randomize_seed_checkbox:
|
128 |
+
# seed_slicer = random.randint(0, MAX_SEED)
|
129 |
+
# generator = torch.Generator().manual_seed(seed_slicer)
|
130 |
+
# result = FLUX_INPAINTING_PIPELINE(
|
131 |
+
# prompt=inpainting_prompt_text,
|
132 |
+
# image=image,
|
133 |
+
# mask_image=mask,
|
134 |
+
# width=width,
|
135 |
+
# height=height,
|
136 |
+
# strength=strength_slider,
|
137 |
+
# generator=generator,
|
138 |
+
# num_inference_steps=num_inference_steps_slider
|
139 |
+
# ).images[0]
|
140 |
+
# print('INFERENCE DONE')
|
141 |
+
# return result, mask
|
142 |
|
143 |
|
144 |
with gr.Blocks() as demo:
|