Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple | |
import supervision as sv | |
import random | |
import numpy as np | |
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image, ImageFilter | |
from diffusers import FluxInpaintPipeline | |
from utils.florence import load_florence_model, run_florence_inference, \ | |
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK | |
from utils.sam import load_sam_image_model, run_sam_inference | |
MARKDOWN = """ | |
# FLUX.1 Inpainting 🔥 | |
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for | |
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) | |
for taking it to the next level by enabling inpainting with the FLUX. | |
""" | |
MAX_SEED = np.iinfo(np.int32).max | |
IMAGE_SIZE = 1024 | |
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
DEVICE = torch.device("cuda") | |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() | |
if torch.cuda.get_device_properties(0).major >= 8: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE) | |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE) | |
FLUX_INPAINTING_PIPELINE = FluxInpaintPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) | |
def resize_image_dimensions( | |
original_resolution_wh: Tuple[int, int], | |
maximum_dimension: int = IMAGE_SIZE | |
) -> Tuple[int, int]: | |
width, height = original_resolution_wh | |
if width > height: | |
scaling_factor = maximum_dimension / width | |
else: | |
scaling_factor = maximum_dimension / height | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
new_width = new_width - (new_width % 32) | |
new_height = new_height - (new_height % 32) | |
return new_width, new_height | |
def process( | |
input_image_editor: dict, | |
inpainting_prompt_text: str, | |
segmentation_prompt_text: str, | |
seed_slicer: int, | |
randomize_seed_checkbox: bool, | |
strength_slider: float, | |
num_inference_steps_slider: int, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
if not inpainting_prompt_text: | |
gr.Info("Please enter a text prompt.") | |
return None, None | |
image = input_image_editor['background'] | |
mask = input_image_editor['layers'][0] | |
if not image: | |
gr.Info("Please upload an image.") | |
return None, None | |
if not mask and not segmentation_prompt_text: | |
gr.Info("Please draw a mask or enter a segmentation prompt.") | |
return None, None | |
if mask and segmentation_prompt_text: | |
gr.Info("Both mask and segmentation prompt are provided. Please provide only " | |
"one.") | |
return None, None | |
width, height = resize_image_dimensions(original_resolution_wh=image.size) | |
image = image.resize((width, height), Image.LANCZOS) | |
if segmentation_prompt_text: | |
_, result = run_florence_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image, | |
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK, | |
text=segmentation_prompt_text | |
) | |
detections = sv.Detections.from_lmm( | |
lmm=sv.LMM.FLORENCE_2, | |
result=result, | |
resolution_wh=image.size | |
) | |
detections = run_sam_inference(SAM_IMAGE_MODEL, image, detections) | |
if len(detections) == 0: | |
gr.Info(f"{segmentation_prompt_text} prompt did not return any detections.") | |
return None, None | |
mask = Image.fromarray((detections.mask[0].astype(np.uint8)) * 255) | |
mask = mask.resize((width, height), Image.LANCZOS) | |
mask = mask.filter(ImageFilter.GaussianBlur(radius=10)) | |
if randomize_seed_checkbox: | |
seed_slicer = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed_slicer) | |
result = FLUX_INPAINTING_PIPELINE( | |
prompt=inpainting_prompt_text, | |
image=image, | |
mask_image=mask, | |
width=width, | |
height=height, | |
strength=strength_slider, | |
generator=generator, | |
num_inference_steps=num_inference_steps_slider | |
).images[0] | |
print('INFERENCE DONE') | |
return result, mask | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(): | |
input_image_editor_component = gr.ImageEditor( | |
label='Image', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) | |
with gr.Row(): | |
inpainting_prompt_text_component = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter inpainting prompt", | |
container=False, | |
) | |
submit_button_component = gr.Button( | |
value='Submit', variant='primary', scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
segmentation_prompt_text_component = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter segmentation prompt", | |
container=False, | |
) | |
seed_slicer_component = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed_checkbox_component = gr.Checkbox( | |
label="Randomize seed", value=True) | |
with gr.Row(): | |
strength_slider_component = gr.Slider( | |
label="Strength", | |
info="Indicates extent to transform the reference `image`. " | |
"Must be between 0 and 1. `image` is used as a starting " | |
"point and more noise is added the higher the `strength`.", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.85, | |
) | |
num_inference_steps_slider_component = gr.Slider( | |
label="Number of inference steps", | |
info="The number of denoising steps. More denoising steps " | |
"usually lead to a higher quality image at the", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, | |
) | |
with gr.Column(): | |
output_image_component = gr.Image( | |
type='pil', image_mode='RGB', label='Generated image', format="png") | |
with gr.Accordion("Debug", open=False): | |
output_mask_component = gr.Image( | |
type='pil', image_mode='RGB', label='Input mask', format="png") | |
submit_button_component.click( | |
fn=process, | |
inputs=[ | |
input_image_editor_component, | |
inpainting_prompt_text_component, | |
segmentation_prompt_text_component, | |
seed_slicer_component, | |
randomize_seed_checkbox_component, | |
strength_slider_component, | |
num_inference_steps_slider_component | |
], | |
outputs=[ | |
output_image_component, | |
output_mask_component | |
] | |
) | |
demo.launch(debug=False, show_error=True) | |