File size: 5,174 Bytes
8f570a9
 
e128936
 
0d89801
7e66050
 
 
0d89801
 
 
 
031c42b
83cae6c
 
 
0d89801
 
e128936
 
f0e8d1f
0d89801
 
f0e8d1f
0d89801
 
8f570a9
 
 
 
 
 
 
 
 
 
 
 
 
 
bca1af7
 
8f570a9
 
 
 
 
 
 
3e075bb
e128936
 
 
 
 
 
 
 
 
0d89801
 
 
 
 
7e66050
0d89801
 
 
 
 
7e66050
0d89801
 
 
8f570a9
7e66050
 
867296e
e128936
 
 
0d89801
 
7e66050
 
867296e
 
e128936
 
 
c04e1aa
0d89801
 
 
 
 
 
 
 
 
 
 
 
3e075bb
e128936
805962c
 
 
 
 
 
 
 
 
 
e128936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d89801
2b61647
 
7ea5176
 
 
0d89801
 
 
 
 
e128936
 
 
 
 
0d89801
 
2b61647
 
0d89801
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from typing import Tuple

import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline

MARKDOWN = """
# FLUX.1 Inpainting 🔥

Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for 
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) 
for taking it to the next level by enabling inpainting with the FLUX.
"""

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)


def resize_image_dimensions(
    original_resolution_wh: Tuple[int, int],
    maximum_dimension: int = 2048
) -> Tuple[int, int]:
    width, height = original_resolution_wh

    if width > height:
        scaling_factor = maximum_dimension / width
    else:
        scaling_factor = maximum_dimension / height

    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)

    new_width = new_width - (new_width % 32)
    new_height = new_height - (new_height % 32)

    new_width = min(maximum_dimension, new_width)
    new_height = min(maximum_dimension, new_height)

    return new_width, new_height


@spaces.GPU()
def process(
    input_image_editor: dict,
    input_text: str,
    seed_slicer: int,
    randomize_seed_checkbox: bool,
    strength_slider: float,
    num_inference_steps_slider: int,
    progress=gr.Progress(track_tqdm=True)
):
    if not input_text:
        gr.Info("Please enter a text prompt.")
        return None

    image = input_image_editor['background']
    mask = input_image_editor['layers'][0]

    if not image:
        gr.Info("Please upload an image.")
        return None

    if not mask:
        gr.Info("Please draw a mask on the image.")
        return None

    width, height = resize_image_dimensions(original_resolution_wh=image.size)
    resized_image = image.resize((width, height), Image.LANCZOS)
    resized_mask = mask.resize((width, height), Image.NEAREST)

    if randomize_seed_checkbox:
        seed_slicer = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed_slicer)
    return pipe(
        prompt=input_text,
        image=resized_image,
        mask_image=resized_mask,
        width=width,
        height=height,
        strength=strength_slider,
        generator=generator,
        num_inference_steps=num_inference_steps_slider
    ).images[0], resized_mask


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image_editor_component = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload", "webcam"],
                image_mode='RGB',
                layers=False,
                brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))

            with gr.Row():
                input_text_component = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                submit_button_component = gr.Button(
                    value='Submit', variant='primary', scale=0)

            with gr.Accordion("Advanced Settings", open=False):
                seed_slicer_component = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed_checkbox_component = gr.Checkbox(
                    label="Randomize seed", value=True)

                with gr.Row():
                    strength_slider_component = gr.Slider(
                        label="Strength",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.75,
                    )

                    num_inference_steps_slider_component = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=20,
                    )
        with gr.Column():
            output_image_component = gr.Image(
                type='pil', image_mode='RGB', label='Generated image')
            with gr.Accordion("Debug", open=False):
                output_mask_component = gr.Image(
                    type='pil', image_mode='RGB', label='Input mask')

    submit_button_component.click(
        fn=process,
        inputs=[
            input_image_editor_component,
            input_text_component,
            seed_slicer_component,
            randomize_seed_checkbox_component,
            strength_slider_component,
            num_inference_steps_slider_component
        ],
        outputs=[
            output_image_component,
            output_mask_component
        ]
    )

demo.launch(debug=False, show_error=True)