SivaResearch's picture
demo
b6d5990
import os
import argparse
from tqdm import tqdm
import torch.nn as nn
import tensorflow as tf
import torch.optim as optim
from models.TMC import ETMC, ce_loss
import torchvision.transforms as transforms
from data.dfdt_dataset import FakeAVCelebDatasetTrain, FakeAVCelebDatasetVal
from utils.utils import *
from utils.logger import create_logger
from sklearn.metrics import accuracy_score
from torch.utils.tensorboard import SummaryWriter
# Define the audio_args dictionary
audio_args = {
'nb_samp': 64600,
'first_conv': 1024,
'in_channels': 1,
'filts': [20, [20, 20], [20, 128], [128, 128]],
'blocks': [2, 4],
'nb_fc_node': 1024,
'gru_node': 1024,
'nb_gru_layer': 3,
}
def get_args(parser):
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
parser.add_argument("--LOAD_SIZE", type=int, default=256)
parser.add_argument("--FINE_SIZE", type=int, default=224)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--hidden", nargs="*", type=int, default=[])
parser.add_argument("--hidden_sz", type=int, default=768)
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
parser.add_argument("--img_hidden_sz", type=int, default=1024)
parser.add_argument("--include_bn", type=int, default=True)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--lr_factor", type=float, default=0.3)
parser.add_argument("--lr_patience", type=int, default=10)
parser.add_argument("--max_epochs", type=int, default=500)
parser.add_argument("--n_workers", type=int, default=12)
parser.add_argument("--name", type=str, default="MMDF")
parser.add_argument("--num_image_embeds", type=int, default=1)
parser.add_argument("--patience", type=int, default=20)
parser.add_argument("--savedir", type=str, default="./savepath/")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--n_classes", type=int, default=2)
parser.add_argument("--annealing_epoch", type=int, default=10)
parser.add_argument("--device", type=str, default='cpu')
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
parser.add_argument("--freeze_image_encoder", type=bool, default = True)
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
parser.add_argument("--freeze_audio_encoder", type = bool, default = True)
parser.add_argument("--augment_dataset", type = bool, default = True)
for key, value in audio_args.items():
parser.add_argument(f"--{key}", type=type(value), default=value)
def get_optimizer(model, args):
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
return optimizer
def get_scheduler(optimizer, args):
return optim.lr_scheduler.ReduceLROnPlateau(
optimizer, "max", patience=args.lr_patience, verbose=True, factor=args.lr_factor
)
def model_forward(i_epoch, model, args, ce_loss, batch):
rgb, spec, tgt = batch['video_reshaped'], batch['spectrogram'], batch['label_map']
rgb_pt = torch.Tensor(rgb.numpy())
spec = spec.numpy()
spec_pt = torch.Tensor(spec)
tgt_pt = torch.Tensor(tgt.numpy())
if torch.cuda.is_available():
rgb_pt, spec_pt, tgt_pt = rgb_pt.cuda(), spec_pt.cuda(), tgt_pt.cuda()
# depth_alpha, rgb_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
# loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
# ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
# ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
# return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
ce_loss(tgt_pt, pseudo_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
def model_eval(i_epoch, data, model, args, criterion):
model.eval()
with torch.no_grad():
losses, depth_preds, rgb_preds, depthrgb_preds, tgts = [], [], [], [], []
for batch in tqdm(data):
loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt = model_forward(i_epoch, model, args, criterion, batch)
losses.append(loss.item())
depth_pred = depth_alpha.argmax(dim=1).cpu().detach().numpy()
rgb_pred = rgb_alpha.argmax(dim=1).cpu().detach().numpy()
depth_rgb_pred = depth_rgb_alpha.argmax(dim=1).cpu().detach().numpy()
depth_preds.append(depth_pred)
rgb_preds.append(rgb_pred)
depthrgb_preds.append(depth_rgb_pred)
tgt = tgt.cpu().detach().numpy()
tgts.append(tgt)
metrics = {"loss": np.mean(losses)}
print(f"Mean loss is: {metrics['loss']}")
tgts = [l for sl in tgts for l in sl]
depth_preds = [l for sl in depth_preds for l in sl]
rgb_preds = [l for sl in rgb_preds for l in sl]
depthrgb_preds = [l for sl in depthrgb_preds for l in sl]
metrics["spec_acc"] = accuracy_score(tgts, depth_preds)
metrics["rgb_acc"] = accuracy_score(tgts, rgb_preds)
metrics["specrgb_acc"] = accuracy_score(tgts, depthrgb_preds)
return metrics
def write_weight_histograms(writer, step, model):
for idx, item in enumerate(model.named_parameters()):
name = item[0]
weights = item[1].data
if weights.size(dim = 0) > 2:
try:
writer.add_histogram(name, weights, idx)
except ValueError as e:
continue
writer = SummaryWriter()
def train(args):
set_seed(args.seed)
args.savedir = os.path.join(args.savedir, args.name)
os.makedirs(args.savedir, exist_ok=True)
train_ds = FakeAVCelebDatasetTrain(args)
train_ds = train_ds.load_features_from_tfrec()
val_ds = FakeAVCelebDatasetVal(args)
val_ds = val_ds.load_features_from_tfrec()
model = ETMC(args)
optimizer = get_optimizer(model, args)
scheduler = get_scheduler(optimizer, args)
logger = create_logger("%s/logfile.log" % args.savedir, args)
if torch.cuda.is_available():
model.cuda()
torch.save(args, os.path.join(args.savedir, "checkpoint.pt"))
start_epoch, global_step, n_no_improve, best_metric = 0, 0, 0, -np.inf
for i_epoch in range(start_epoch, args.max_epochs):
train_losses = []
model.train()
optimizer.zero_grad()
for index, batch in tqdm(enumerate(train_ds)):
loss, depth_out, rgb_out, depthrgb, tgt = model_forward(i_epoch, model, args, ce_loss, batch)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
train_losses.append(loss.item())
loss.backward()
global_step += 1
if global_step % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
#Write weight histograms to Tensorboard.
write_weight_histograms(writer, i_epoch, model)
model.eval()
metrics = model_eval(
np.inf, val_ds, model, args, ce_loss
)
logger.info("Train Loss: {:.4f}".format(np.mean(train_losses)))
log_metrics("val", metrics, logger)
logger.info(
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
"val", metrics["loss"], metrics["spec_acc"], metrics["rgb_acc"], metrics["specrgb_acc"]
)
)
tuning_metric = metrics["specrgb_acc"]
scheduler.step(tuning_metric)
is_improvement = tuning_metric > best_metric
if is_improvement:
best_metric = tuning_metric
n_no_improve = 0
else:
n_no_improve += 1
save_checkpoint(
{
"epoch": i_epoch + 1,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"n_no_improve": n_no_improve,
"best_metric": best_metric,
},
is_improvement,
args.savedir,
)
if n_no_improve >= args.patience:
logger.info("No improvement. Breaking out of loop.")
break
writer.close()
# load_checkpoint(model, os.path.join(args.savedir, "model_best.pt"))
model.eval()
test_metrics = model_eval(
np.inf, val_ds, model, args, ce_loss
)
logger.info(
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
"Test", test_metrics["loss"], test_metrics["spec_acc"], test_metrics["rgb_acc"],
test_metrics["depthrgb_acc"]
)
)
log_metrics(f"Test", test_metrics, logger)
def cli_main():
parser = argparse.ArgumentParser(description="Train Models")
get_args(parser)
args, remaining_args = parser.parse_known_args()
assert remaining_args == [], remaining_args
train(args)
if __name__ == "__main__":
import warnings
warnings.filterwarnings("ignore")
cli_main()