DeepFakes_Audio_Video_Image / inference_2.py
SivaResearch's picture
demo
b6d5990
import os
import cv2
import onnx
import torch
import argparse
import numpy as np
import torch.nn as nn
from models.TMC import ETMC
from models import image
from onnx2pytorch import ConvertModel
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
pytorch_model = ConvertModel(onnx_model)
#Set random seed for reproducibility.
torch.manual_seed(42)
# Define the audio_args dictionary
audio_args = {
'nb_samp': 64600,
'first_conv': 1024,
'in_channels': 1,
'filts': [20, [20, 20], [20, 128], [128, 128]],
'blocks': [2, 4],
'nb_fc_node': 1024,
'gru_node': 1024,
'nb_gru_layer': 3,
'nb_classes': 2
}
def get_args(parser):
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
parser.add_argument("--LOAD_SIZE", type=int, default=256)
parser.add_argument("--FINE_SIZE", type=int, default=224)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--hidden", nargs="*", type=int, default=[])
parser.add_argument("--hidden_sz", type=int, default=768)
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
parser.add_argument("--img_hidden_sz", type=int, default=1024)
parser.add_argument("--include_bn", type=int, default=True)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--lr_factor", type=float, default=0.3)
parser.add_argument("--lr_patience", type=int, default=10)
parser.add_argument("--max_epochs", type=int, default=500)
parser.add_argument("--n_workers", type=int, default=12)
parser.add_argument("--name", type=str, default="MMDF")
parser.add_argument("--num_image_embeds", type=int, default=1)
parser.add_argument("--patience", type=int, default=20)
parser.add_argument("--savedir", type=str, default="./savepath/")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--n_classes", type=int, default=2)
parser.add_argument("--annealing_epoch", type=int, default=10)
parser.add_argument("--device", type=str, default='cpu')
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
parser.add_argument("--augment_dataset", type = bool, default = True)
for key, value in audio_args.items():
parser.add_argument(f"--{key}", type=type(value), default=value)
def model_summary(args):
'''Prints the model summary.'''
model = ETMC(args)
for name, layer in model.named_modules():
print(name, layer)
def load_multimodal_model(args):
'''Load multimodal model'''
model = ETMC(args)
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
model.load_state_dict(ckpt, strict = True)
model.eval()
return model
def load_img_modality_model(args):
'''Loads image modality model.'''
rgb_encoder = pytorch_model
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
rgb_encoder.eval()
return rgb_encoder
def load_spec_modality_model(args):
spec_encoder = image.RawNet(args)
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
spec_encoder.eval()
return spec_encoder
#Load models.
parser = argparse.ArgumentParser(description="Inference models")
get_args(parser)
args, remaining_args = parser.parse_known_args()
assert remaining_args == [], remaining_args
spec_model = load_spec_modality_model(args)
img_model = load_img_modality_model(args)
def preprocess_img(face):
face = face / 255
face = cv2.resize(face, (256, 256))
# face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
return face_pt
def preprocess_audio(audio_file):
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
return audio_pt
def deepfakes_spec_predict(input_audio):
x, _ = input_audio
audio = preprocess_audio(x)
spec_grads = spec_model.forward(audio)
spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
# multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
# out = nn.Softmax()(multimodal_grads)
# max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
# max_value = out[max] #Actual value of the tensor.
max_value = np.argmax(spec_grads_inv)
if max_value > 0.5:
preds = round(100 - (max_value*100), 3)
text2 = f"The audio is REAL."
else:
preds = round(max_value*100, 3)
text2 = f"The audio is FAKE."
return text2
def deepfakes_image_predict(input_image):
face = preprocess_img(input_image)
print(f"Face shape is: {face.shape}")
img_grads = img_model.forward(face)
img_grads = img_grads.cpu().detach().numpy()
img_grads_np = np.squeeze(img_grads)
if img_grads_np[0] > 0.5:
preds = round(img_grads_np[0] * 100, 3)
text2 = f"The image is REAL. \nConfidence score is: {preds}"
else:
preds = round(img_grads_np[1] * 100, 3)
text2 = f"The image is FAKE. \nConfidence score is: {preds}"
return text2
def preprocess_video(input_video, n_frames = 3):
v_cap = cv2.VideoCapture(input_video)
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Pick 'n_frames' evenly spaced frames to sample
if n_frames is None:
sample = np.arange(0, v_len)
else:
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
#Loop through frames.
frames = []
for j in range(v_len):
success = v_cap.grab()
if j in sample:
# Load frame
success, frame = v_cap.retrieve()
if not success:
continue
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = preprocess_img(frame)
frames.append(frame)
v_cap.release()
return frames
def deepfakes_video_predict(input_video):
'''Perform inference on a video.'''
video_frames = preprocess_video(input_video)
real_faces_list = []
fake_faces_list = []
for face in video_frames:
# face = preprocess_img(face)
img_grads = img_model.forward(face)
img_grads = img_grads.cpu().detach().numpy()
img_grads_np = np.squeeze(img_grads)
real_faces_list.append(img_grads_np[0])
fake_faces_list.append(img_grads_np[1])
real_faces_mean = np.mean(real_faces_list)
fake_faces_mean = np.mean(fake_faces_list)
if real_faces_mean > 0.5:
preds = round(real_faces_mean * 100, 3)
text2 = f"The video is REAL. \nConfidence score is: {preds}%"
else:
preds = round(fake_faces_mean * 100, 3)
text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
return text2