SivaResearch's picture
demo
b6d5990
raw
history blame
4.73 kB
'''Module for loading the fakeavceleb dataset from tfrecord format'''
import numpy as np
import tensorflow as tf
from data.augmentation_utils import create_frame_transforms, create_spec_transforms
FEATURE_DESCRIPTION = {
'video_path': tf.io.FixedLenFeature([], tf.string),
'image/encoded': tf.io.FixedLenFeature([], tf.string),
'clip/label/index': tf.io.FixedLenFeature([], tf.int64),
'clip/label/text': tf.io.FixedLenFeature([], tf.string),
'WAVEFORM/feature/floats': tf.io.FixedLenFeature([], tf.string)
}
@tf.function
def _parse_function(example_proto):
#Parse the input `tf.train.Example` proto using the dictionary above.
example = tf.io.parse_single_example(example_proto, FEATURE_DESCRIPTION)
video_path = example['video_path']
video = tf.io.decode_raw(example['image/encoded'], tf.int8)
spectrogram = tf.io.decode_raw(example['WAVEFORM/feature/floats'], tf.float32)
label = example["clip/label/text"]
label_map = example["clip/label/index"]
return video, spectrogram, label_map
@tf.function
def decode_inputs(video, spectrogram, label_map):
'''Decode tensors to arrays with desired shape'''
frame = tf.reshape(video, [10, 3, 256, 256])
frame = frame[0] / 255 #Pick the first frame and normalize it.
# frame = tf.cast(frame, tf.float32)
label_map = tf.expand_dims(label_map, axis = 0)
sample = {'video_reshaped': frame, 'spectrogram': spectrogram, 'label_map': label_map}
return sample
def decode_train_inputs(video, spectrogram, label_map):
#Data augmentation for spectograms
spectrogram_shape = spectrogram.shape
spec_augmented = tf.py_function(aug_spec_fn, [spectrogram], tf.float32)
spec_augmented.set_shape(spectrogram_shape)
frame = tf.reshape(video, [10, 256, 256, 3])
frame = frame[0] #Pick the first frame.
frame = frame / 255 #Normalize tensor.
frame_augmented = tf.py_function(aug_img_fn, [frame], tf.uint8)
# frame_augmented.set_shape(frame_shape)
frame_augmented.set_shape([3, 256, 256])
label_map = tf.expand_dims(label_map, axis = 0)
augmented_sample = {'video_reshaped': frame_augmented, 'spectrogram': spec_augmented, 'label_map': label_map}
return augmented_sample
def aug_img_fn(frame):
frame = frame.numpy().astype(np.uint8)
frame_data = {'image': frame}
aug_frame_data = create_frame_transforms(**frame_data)
aug_img = aug_frame_data['image']
aug_img = aug_img.transpose(2, 0, 1)
return aug_img
def aug_spec_fn(spec):
spec = spec.numpy()
spec_data = {'spec': spec}
aug_spec_data = create_spec_transforms(**spec_data)
aug_spec = aug_spec_data['spec']
return aug_spec
class FakeAVCelebDatasetTrain:
def __init__(self, args):
self.args = args
self.samples = self.load_features_from_tfrec()
def load_features_from_tfrec(self):
'''Loads raw features from a tfrecord file and returns them as raw inputs'''
ds = tf.io.matching_files(self.args.data_dir)
files = tf.random.shuffle(ds)
shards = tf.data.Dataset.from_tensor_slices(files)
dataset = shards.interleave(tf.data.TFRecordDataset)
dataset = dataset.shuffle(buffer_size=100)
dataset = dataset.map(_parse_function, num_parallel_calls = tf.data.AUTOTUNE)
dataset = dataset.map(decode_train_inputs, num_parallel_calls = tf.data.AUTOTUNE)
dataset = dataset.padded_batch(batch_size = self.args.batch_size)
return dataset
def __len__(self):
self.samples = self.load_features_from_tfrec(self.args.data_dir)
cnt = self.samples.reduce(np.int64(0), lambda x, _: x + 1)
cnt = cnt.numpy()
return cnt
class FakeAVCelebDatasetVal:
def __init__(self, args):
self.args = args
self.samples = self.load_features_from_tfrec()
def load_features_from_tfrec(self):
'''Loads raw features from a tfrecord file and returns them as raw inputs'''
ds = tf.io.matching_files(self.args.data_dir)
files = tf.random.shuffle(ds)
shards = tf.data.Dataset.from_tensor_slices(files)
dataset = shards.interleave(tf.data.TFRecordDataset)
dataset = dataset.shuffle(buffer_size=100)
dataset = dataset.map(_parse_function, num_parallel_calls = tf.data.AUTOTUNE)
dataset = dataset.map(decode_inputs, num_parallel_calls = tf.data.AUTOTUNE)
dataset = dataset.padded_batch(batch_size = self.args.batch_size)
return dataset
def __len__(self):
self.samples = self.load_features_from_tfrec(self.args.data_dir)
cnt = self.samples.reduce(np.int64(0), lambda x, _: x + 1)
cnt = cnt.numpy()
return cnt