File size: 5,708 Bytes
b6d5990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
from models import image
import torch.nn.functional as F


# loss function
def KL(alpha, c):
    if torch.cuda.is_available():
        beta = torch.ones((1, c)).cuda()
    else:
        beta = torch.ones((1, c))
    S_alpha = torch.sum(alpha, dim=1, keepdim=True)
    S_beta = torch.sum(beta, dim=1, keepdim=True)
    lnB = torch.lgamma(S_alpha) - torch.sum(torch.lgamma(alpha), dim=1, keepdim=True)
    lnB_uni = torch.sum(torch.lgamma(beta), dim=1, keepdim=True) - torch.lgamma(S_beta)
    dg0 = torch.digamma(S_alpha)
    dg1 = torch.digamma(alpha)
    kl = torch.sum((alpha - beta) * (dg1 - dg0), dim=1, keepdim=True) + lnB + lnB_uni
    return kl

def ce_loss(p, alpha, c, global_step, annealing_step):
    S = torch.sum(alpha, dim=1, keepdim=True)
    E = alpha - 1
    label = p
    A = torch.sum(label * (torch.digamma(S) - torch.digamma(alpha)), dim=1, keepdim=True)

    annealing_coef = min(1, global_step / annealing_step)
    alp = E * (1 - label) + 1
    B = annealing_coef * KL(alp, c)
    return torch.mean((A + B))


class TMC(nn.Module):
    def __init__(self, args):
        super(TMC, self).__init__()
        self.args = args
        self.rgbenc = image.ImageEncoder(args)
        self.specenc = image.RawNet(args)
        
        spec_last_size = args.img_hidden_sz * 1
        rgb_last_size = args.img_hidden_sz * args.num_image_embeds
        self.spec_depth = nn.ModuleList()
        self.clf_rgb = nn.ModuleList()

        for hidden in args.hidden:
            self.spec_depth.append(nn.Linear(spec_last_size, hidden))
            self.spec_depth.append(nn.ReLU())
            self.spec_depth.append(nn.Dropout(args.dropout))
            spec_last_size = hidden
        self.spec_depth.append(nn.Linear(spec_last_size, args.n_classes))

        for hidden in args.hidden:
            self.clf_rgb.append(nn.Linear(rgb_last_size, hidden))
            self.clf_rgb.append(nn.ReLU())
            self.clf_rgb.append(nn.Dropout(args.dropout))
            rgb_last_size = hidden
        self.clf_rgb.append(nn.Linear(rgb_last_size, args.n_classes))

    def DS_Combin_two(self, alpha1, alpha2):
        # Calculate the merger of two DS evidences
        alpha = dict()
        alpha[0], alpha[1] = alpha1, alpha2
        b, S, E, u = dict(), dict(), dict(), dict()
        for v in range(2):
            S[v] = torch.sum(alpha[v], dim=1, keepdim=True)
            E[v] = alpha[v] - 1
            b[v] = E[v] / (S[v].expand(E[v].shape))
            u[v] = self.args.n_classes / S[v]

        # b^0 @ b^(0+1)
        bb = torch.bmm(b[0].view(-1, self.args.n_classes, 1), b[1].view(-1, 1, self.args.n_classes))
        # b^0 * u^1
        uv1_expand = u[1].expand(b[0].shape)
        bu = torch.mul(b[0], uv1_expand)
        # b^1 * u^0
        uv_expand = u[0].expand(b[0].shape)
        ub = torch.mul(b[1], uv_expand)
        # calculate K
        bb_sum = torch.sum(bb, dim=(1, 2), out=None)
        bb_diag = torch.diagonal(bb, dim1=-2, dim2=-1).sum(-1)
        # bb_diag1 = torch.diag(torch.mm(b[v], torch.transpose(b[v+1], 0, 1)))
        K = bb_sum - bb_diag

        # calculate b^a
        b_a = (torch.mul(b[0], b[1]) + bu + ub) / ((1 - K).view(-1, 1).expand(b[0].shape))
        # calculate u^a
        u_a = torch.mul(u[0], u[1]) / ((1 - K).view(-1, 1).expand(u[0].shape))
        # test = torch.sum(b_a, dim = 1, keepdim = True) + u_a #Verify programming errors

        # calculate new S
        S_a = self.args.n_classes / u_a
        # calculate new e_k
        e_a = torch.mul(b_a, S_a.expand(b_a.shape))
        alpha_a = e_a + 1
        return alpha_a

    def forward(self, rgb, spec):
        spec = self.specenc(spec)
        spec = torch.flatten(spec, start_dim=1)

        rgb = self.rgbenc(rgb)
        rgb = torch.flatten(rgb, start_dim=1)

        spec_out = spec

        for layer in self.spec_depth:
            spec_out = layer(spec_out)

        rgb_out = rgb

        for layer in self.clf_rgb:
            rgb_out = layer(rgb_out)

        spec_evidence, rgb_evidence = F.softplus(spec_out), F.softplus(rgb_out)
        spec_alpha, rgb_alpha = spec_evidence+1, rgb_evidence+1
        spec_rgb_alpha = self.DS_Combin_two(spec_alpha, rgb_alpha)
        return spec_alpha, rgb_alpha, spec_rgb_alpha


class ETMC(TMC):
    def __init__(self, args):
        super(ETMC, self).__init__(args)
        last_size = args.img_hidden_sz * args.num_image_embeds + args.img_hidden_sz * args.num_image_embeds
        self.clf = nn.ModuleList()
        for hidden in args.hidden:
            self.clf.append(nn.Linear(last_size, hidden))
            self.clf.append(nn.ReLU())
            self.clf.append(nn.Dropout(args.dropout))
            last_size = hidden
        self.clf.append(nn.Linear(last_size, args.n_classes))

    def forward(self, rgb, spec):
        spec = self.specenc(spec)
        spec = torch.flatten(spec, start_dim=1)

        rgb = self.rgbenc(rgb)
        rgb = torch.flatten(rgb, start_dim=1)

        spec_out = spec
        for layer in self.spec_depth:
            spec_out = layer(spec_out)

        rgb_out = rgb
        for layer in self.clf_rgb:
            rgb_out = layer(rgb_out)

        pseudo_out = torch.cat([rgb, spec], -1)
        for layer in self.clf:
            pseudo_out = layer(pseudo_out)

        depth_evidence, rgb_evidence, pseudo_evidence = F.softplus(spec_out), F.softplus(rgb_out), F.softplus(pseudo_out)
        depth_alpha, rgb_alpha, pseudo_alpha = depth_evidence+1, rgb_evidence+1, pseudo_evidence+1
        depth_rgb_alpha = self.DS_Combin_two(self.DS_Combin_two(depth_alpha, rgb_alpha), pseudo_alpha)
        return depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha