File size: 9,666 Bytes
b6d5990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import argparse
from tqdm import tqdm
import torch.nn as nn
import tensorflow as tf
import torch.optim as optim

from models.TMC import ETMC, ce_loss
import torchvision.transforms as transforms
from data.dfdt_dataset import FakeAVCelebDatasetTrain, FakeAVCelebDatasetVal


from utils.utils import *
from utils.logger import create_logger
from sklearn.metrics import accuracy_score
from torch.utils.tensorboard import SummaryWriter

# Define the audio_args dictionary
audio_args = {
    'nb_samp': 64600,
    'first_conv': 1024,
    'in_channels': 1,
    'filts': [20, [20, 20], [20, 128], [128, 128]],
    'blocks': [2, 4],
    'nb_fc_node': 1024,
    'gru_node': 1024,
    'nb_gru_layer': 3,
}


def get_args(parser):
    parser.add_argument("--batch_size", type=int, default=8)
    parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
    parser.add_argument("--LOAD_SIZE", type=int, default=256)
    parser.add_argument("--FINE_SIZE", type=int, default=224)
    parser.add_argument("--dropout", type=float, default=0.2)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--hidden", nargs="*", type=int, default=[])
    parser.add_argument("--hidden_sz", type=int, default=768)
    parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
    parser.add_argument("--img_hidden_sz", type=int, default=1024)
    parser.add_argument("--include_bn", type=int, default=True)
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--lr_factor", type=float, default=0.3)
    parser.add_argument("--lr_patience", type=int, default=10)
    parser.add_argument("--max_epochs", type=int, default=500)
    parser.add_argument("--n_workers", type=int, default=12)
    parser.add_argument("--name", type=str, default="MMDF")
    parser.add_argument("--num_image_embeds", type=int, default=1)
    parser.add_argument("--patience", type=int, default=20)
    parser.add_argument("--savedir", type=str, default="./savepath/")
    parser.add_argument("--seed", type=int, default=1)
    parser.add_argument("--n_classes", type=int, default=2)
    parser.add_argument("--annealing_epoch", type=int, default=10)
    parser.add_argument("--device", type=str, default='cpu')
    parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
    parser.add_argument("--freeze_image_encoder", type=bool, default = True)
    parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
    parser.add_argument("--freeze_audio_encoder", type = bool, default = True)
    parser.add_argument("--augment_dataset", type = bool, default = True)

    for key, value in audio_args.items():
        parser.add_argument(f"--{key}", type=type(value), default=value)

def get_optimizer(model, args):
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
    return optimizer


def get_scheduler(optimizer, args):
    return optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, "max", patience=args.lr_patience, verbose=True, factor=args.lr_factor
    )

def model_forward(i_epoch, model, args, ce_loss, batch):
    rgb, spec, tgt = batch['video_reshaped'], batch['spectrogram'], batch['label_map']
    rgb_pt = torch.Tensor(rgb.numpy())
    spec = spec.numpy()
    spec_pt = torch.Tensor(spec)
    tgt_pt = torch.Tensor(tgt.numpy())

    if torch.cuda.is_available():
        rgb_pt, spec_pt, tgt_pt = rgb_pt.cuda(), spec_pt.cuda(), tgt_pt.cuda()
        
    # depth_alpha, rgb_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)

    # loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
    #        ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
    #        ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
    # return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt

    depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)

    loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
           ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
           ce_loss(tgt_pt, pseudo_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
           ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
    return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt



def model_eval(i_epoch, data, model, args, criterion):
    model.eval()
    with torch.no_grad():
        losses, depth_preds, rgb_preds, depthrgb_preds, tgts = [], [], [], [], []
        for batch in tqdm(data):
            loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt = model_forward(i_epoch, model, args, criterion, batch)
            losses.append(loss.item())

            depth_pred = depth_alpha.argmax(dim=1).cpu().detach().numpy()
            rgb_pred = rgb_alpha.argmax(dim=1).cpu().detach().numpy()
            depth_rgb_pred = depth_rgb_alpha.argmax(dim=1).cpu().detach().numpy()

            depth_preds.append(depth_pred)
            rgb_preds.append(rgb_pred)
            depthrgb_preds.append(depth_rgb_pred)
            tgt = tgt.cpu().detach().numpy()
            tgts.append(tgt)

    metrics = {"loss": np.mean(losses)}
    print(f"Mean loss is: {metrics['loss']}")

    tgts = [l for sl in tgts for l in sl]
    depth_preds = [l for sl in depth_preds for l in sl]
    rgb_preds = [l for sl in rgb_preds for l in sl]
    depthrgb_preds = [l for sl in depthrgb_preds for l in sl]
    metrics["spec_acc"] = accuracy_score(tgts, depth_preds)
    metrics["rgb_acc"] = accuracy_score(tgts, rgb_preds)
    metrics["specrgb_acc"] = accuracy_score(tgts, depthrgb_preds)
    return metrics

def write_weight_histograms(writer, step, model):
    for idx, item in enumerate(model.named_parameters()):
        name = item[0]
        weights = item[1].data
        if weights.size(dim = 0) > 2:
            try:
                writer.add_histogram(name, weights, idx)
            except ValueError as e:
                continue

writer = SummaryWriter()

def train(args):
    set_seed(args.seed)
    args.savedir = os.path.join(args.savedir, args.name)
    os.makedirs(args.savedir, exist_ok=True)

    train_ds = FakeAVCelebDatasetTrain(args)
    train_ds = train_ds.load_features_from_tfrec()

    val_ds = FakeAVCelebDatasetVal(args)
    val_ds = val_ds.load_features_from_tfrec()
    
    model = ETMC(args)
    optimizer = get_optimizer(model, args)
    scheduler = get_scheduler(optimizer, args)
    logger = create_logger("%s/logfile.log" % args.savedir, args)
    if torch.cuda.is_available():
        model.cuda()

    torch.save(args, os.path.join(args.savedir, "checkpoint.pt"))
    start_epoch, global_step, n_no_improve, best_metric = 0, 0, 0, -np.inf

    for i_epoch in range(start_epoch, args.max_epochs):
        train_losses = []
        model.train()
        optimizer.zero_grad()

        for index, batch in tqdm(enumerate(train_ds)):
            loss, depth_out, rgb_out, depthrgb, tgt = model_forward(i_epoch, model, args, ce_loss, batch)
            if args.gradient_accumulation_steps > 1:
                 loss = loss / args.gradient_accumulation_steps

            train_losses.append(loss.item())
            loss.backward()
            global_step += 1
            if global_step % args.gradient_accumulation_steps == 0:
                optimizer.step()
                optimizer.zero_grad()

        #Write weight histograms to Tensorboard.
        write_weight_histograms(writer, i_epoch, model)

        model.eval()
        metrics = model_eval(
            np.inf, val_ds, model, args, ce_loss
        )
        logger.info("Train Loss: {:.4f}".format(np.mean(train_losses)))
        log_metrics("val", metrics, logger)
        logger.info(
            "{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
                "val", metrics["loss"], metrics["spec_acc"], metrics["rgb_acc"], metrics["specrgb_acc"]
            )
        )
        tuning_metric = metrics["specrgb_acc"]

        scheduler.step(tuning_metric)
        is_improvement = tuning_metric > best_metric
        if is_improvement:
            best_metric = tuning_metric
            n_no_improve = 0
        else:
            n_no_improve += 1

        save_checkpoint(
            {
                "epoch": i_epoch + 1,
                "optimizer": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "n_no_improve": n_no_improve,
                "best_metric": best_metric,
            },
            is_improvement,
            args.savedir,
        )

        if n_no_improve >= args.patience:
            logger.info("No improvement. Breaking out of loop.")
            break
    writer.close()
    # load_checkpoint(model, os.path.join(args.savedir, "model_best.pt"))
    model.eval()
    test_metrics = model_eval(
        np.inf, val_ds, model, args, ce_loss
    )
    logger.info(
        "{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
            "Test", test_metrics["loss"], test_metrics["spec_acc"], test_metrics["rgb_acc"],
            test_metrics["depthrgb_acc"]
        )
    )
    log_metrics(f"Test", test_metrics, logger)


def cli_main():
    parser = argparse.ArgumentParser(description="Train Models")
    get_args(parser)
    args, remaining_args = parser.parse_known_args()
    assert remaining_args == [], remaining_args
    train(args)


if __name__ == "__main__":
    import warnings
    warnings.filterwarnings("ignore")
    cli_main()