Spaces:
Runtime error
Runtime error
File size: 9,666 Bytes
b6d5990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import argparse
from tqdm import tqdm
import torch.nn as nn
import tensorflow as tf
import torch.optim as optim
from models.TMC import ETMC, ce_loss
import torchvision.transforms as transforms
from data.dfdt_dataset import FakeAVCelebDatasetTrain, FakeAVCelebDatasetVal
from utils.utils import *
from utils.logger import create_logger
from sklearn.metrics import accuracy_score
from torch.utils.tensorboard import SummaryWriter
# Define the audio_args dictionary
audio_args = {
'nb_samp': 64600,
'first_conv': 1024,
'in_channels': 1,
'filts': [20, [20, 20], [20, 128], [128, 128]],
'blocks': [2, 4],
'nb_fc_node': 1024,
'gru_node': 1024,
'nb_gru_layer': 3,
}
def get_args(parser):
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
parser.add_argument("--LOAD_SIZE", type=int, default=256)
parser.add_argument("--FINE_SIZE", type=int, default=224)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--hidden", nargs="*", type=int, default=[])
parser.add_argument("--hidden_sz", type=int, default=768)
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
parser.add_argument("--img_hidden_sz", type=int, default=1024)
parser.add_argument("--include_bn", type=int, default=True)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--lr_factor", type=float, default=0.3)
parser.add_argument("--lr_patience", type=int, default=10)
parser.add_argument("--max_epochs", type=int, default=500)
parser.add_argument("--n_workers", type=int, default=12)
parser.add_argument("--name", type=str, default="MMDF")
parser.add_argument("--num_image_embeds", type=int, default=1)
parser.add_argument("--patience", type=int, default=20)
parser.add_argument("--savedir", type=str, default="./savepath/")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--n_classes", type=int, default=2)
parser.add_argument("--annealing_epoch", type=int, default=10)
parser.add_argument("--device", type=str, default='cpu')
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
parser.add_argument("--freeze_image_encoder", type=bool, default = True)
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
parser.add_argument("--freeze_audio_encoder", type = bool, default = True)
parser.add_argument("--augment_dataset", type = bool, default = True)
for key, value in audio_args.items():
parser.add_argument(f"--{key}", type=type(value), default=value)
def get_optimizer(model, args):
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
return optimizer
def get_scheduler(optimizer, args):
return optim.lr_scheduler.ReduceLROnPlateau(
optimizer, "max", patience=args.lr_patience, verbose=True, factor=args.lr_factor
)
def model_forward(i_epoch, model, args, ce_loss, batch):
rgb, spec, tgt = batch['video_reshaped'], batch['spectrogram'], batch['label_map']
rgb_pt = torch.Tensor(rgb.numpy())
spec = spec.numpy()
spec_pt = torch.Tensor(spec)
tgt_pt = torch.Tensor(tgt.numpy())
if torch.cuda.is_available():
rgb_pt, spec_pt, tgt_pt = rgb_pt.cuda(), spec_pt.cuda(), tgt_pt.cuda()
# depth_alpha, rgb_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
# loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
# ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
# ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
# return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
ce_loss(tgt_pt, pseudo_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
def model_eval(i_epoch, data, model, args, criterion):
model.eval()
with torch.no_grad():
losses, depth_preds, rgb_preds, depthrgb_preds, tgts = [], [], [], [], []
for batch in tqdm(data):
loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt = model_forward(i_epoch, model, args, criterion, batch)
losses.append(loss.item())
depth_pred = depth_alpha.argmax(dim=1).cpu().detach().numpy()
rgb_pred = rgb_alpha.argmax(dim=1).cpu().detach().numpy()
depth_rgb_pred = depth_rgb_alpha.argmax(dim=1).cpu().detach().numpy()
depth_preds.append(depth_pred)
rgb_preds.append(rgb_pred)
depthrgb_preds.append(depth_rgb_pred)
tgt = tgt.cpu().detach().numpy()
tgts.append(tgt)
metrics = {"loss": np.mean(losses)}
print(f"Mean loss is: {metrics['loss']}")
tgts = [l for sl in tgts for l in sl]
depth_preds = [l for sl in depth_preds for l in sl]
rgb_preds = [l for sl in rgb_preds for l in sl]
depthrgb_preds = [l for sl in depthrgb_preds for l in sl]
metrics["spec_acc"] = accuracy_score(tgts, depth_preds)
metrics["rgb_acc"] = accuracy_score(tgts, rgb_preds)
metrics["specrgb_acc"] = accuracy_score(tgts, depthrgb_preds)
return metrics
def write_weight_histograms(writer, step, model):
for idx, item in enumerate(model.named_parameters()):
name = item[0]
weights = item[1].data
if weights.size(dim = 0) > 2:
try:
writer.add_histogram(name, weights, idx)
except ValueError as e:
continue
writer = SummaryWriter()
def train(args):
set_seed(args.seed)
args.savedir = os.path.join(args.savedir, args.name)
os.makedirs(args.savedir, exist_ok=True)
train_ds = FakeAVCelebDatasetTrain(args)
train_ds = train_ds.load_features_from_tfrec()
val_ds = FakeAVCelebDatasetVal(args)
val_ds = val_ds.load_features_from_tfrec()
model = ETMC(args)
optimizer = get_optimizer(model, args)
scheduler = get_scheduler(optimizer, args)
logger = create_logger("%s/logfile.log" % args.savedir, args)
if torch.cuda.is_available():
model.cuda()
torch.save(args, os.path.join(args.savedir, "checkpoint.pt"))
start_epoch, global_step, n_no_improve, best_metric = 0, 0, 0, -np.inf
for i_epoch in range(start_epoch, args.max_epochs):
train_losses = []
model.train()
optimizer.zero_grad()
for index, batch in tqdm(enumerate(train_ds)):
loss, depth_out, rgb_out, depthrgb, tgt = model_forward(i_epoch, model, args, ce_loss, batch)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
train_losses.append(loss.item())
loss.backward()
global_step += 1
if global_step % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
#Write weight histograms to Tensorboard.
write_weight_histograms(writer, i_epoch, model)
model.eval()
metrics = model_eval(
np.inf, val_ds, model, args, ce_loss
)
logger.info("Train Loss: {:.4f}".format(np.mean(train_losses)))
log_metrics("val", metrics, logger)
logger.info(
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
"val", metrics["loss"], metrics["spec_acc"], metrics["rgb_acc"], metrics["specrgb_acc"]
)
)
tuning_metric = metrics["specrgb_acc"]
scheduler.step(tuning_metric)
is_improvement = tuning_metric > best_metric
if is_improvement:
best_metric = tuning_metric
n_no_improve = 0
else:
n_no_improve += 1
save_checkpoint(
{
"epoch": i_epoch + 1,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"n_no_improve": n_no_improve,
"best_metric": best_metric,
},
is_improvement,
args.savedir,
)
if n_no_improve >= args.patience:
logger.info("No improvement. Breaking out of loop.")
break
writer.close()
# load_checkpoint(model, os.path.join(args.savedir, "model_best.pt"))
model.eval()
test_metrics = model_eval(
np.inf, val_ds, model, args, ce_loss
)
logger.info(
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
"Test", test_metrics["loss"], test_metrics["spec_acc"], test_metrics["rgb_acc"],
test_metrics["depthrgb_acc"]
)
)
log_metrics(f"Test", test_metrics, logger)
def cli_main():
parser = argparse.ArgumentParser(description="Train Models")
get_args(parser)
args, remaining_args = parser.parse_known_args()
assert remaining_args == [], remaining_args
train(args)
if __name__ == "__main__":
import warnings
warnings.filterwarnings("ignore")
cli_main()
|