Sirawitch commited on
Commit
4e580b4
1 Parent(s): 33bb9c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -59
app.py CHANGED
@@ -1,63 +1,40 @@
1
- import gradio as gr
2
  from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
+ from fastapi import FastAPI, Request
2
  from huggingface_hub import InferenceClient
3
+ import uvicorn
4
+
5
+ app = FastAPI()
6
+
7
+ client = InferenceClient("scb10x/llama-3-typhoon-v1.5-8b-instruct")
8
+
9
+ @app.post("/webhook")
10
+ async def webhook(request: Request):
11
+ # รับข้อมูลจาก Dialogflow
12
+ data = await request.json()
13
+ query_text = data['queryResult']['queryText']
14
+
15
+ # สร้าง messages สำหรับ Huggingface API
16
+ messages = [
17
+ {"role": "system", "content": "You are a friendly Chatbot."},
18
+ {"role": "user", "content": query_text}
19
+ ]
20
+
21
+ # เรียกใช้ Huggingface API
22
+ response = client.chat_completion(
 
 
 
 
 
 
 
 
23
  messages,
24
+ max_tokens=512,
25
+ temperature=0.7,
26
+ top_p=0.95,
27
+ )
28
+
29
+ # ดึงข้อความตอบกลับ
30
+ answer = response.choices[0].message.content
31
+
32
+ # สร้างการตอบกลับสำหรับ Dialogflow
33
+ dialogflow_response = {
34
+ "fulfillmentText": answer,
35
+ }
36
+
37
+ return dialogflow_response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  if __name__ == "__main__":
40
+ uvicorn.run(app, host="0.0.0.0", port=7860)