File size: 20,175 Bytes
267daea
7f6295c
267daea
7f6295c
 
 
 
267daea
 
 
 
 
7f6295c
267daea
 
 
7f6295c
 
 
 
 
 
 
 
 
 
 
 
 
 
267daea
7f6295c
267daea
 
7f6295c
 
 
 
 
 
 
267daea
 
7f6295c
267daea
7f6295c
267daea
7f6295c
 
 
267daea
7f6295c
267daea
 
 
7f6295c
 
267daea
7f6295c
 
 
267daea
7f6295c
 
267daea
7f6295c
 
 
267daea
 
 
 
 
 
7f6295c
 
 
 
 
 
 
 
 
 
 
 
 
267daea
7f6295c
267daea
 
 
 
 
7f6295c
 
267daea
7f6295c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267daea
7f6295c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267daea
7f6295c
 
 
 
 
 
 
 
 
 
267daea
7f6295c
 
 
 
 
 
 
 
17a5ce9
7f6295c
 
267daea
7f6295c
 
 
 
 
 
 
 
267daea
7f6295c
267daea
7f6295c
267daea
 
 
 
 
7f6295c
 
 
 
 
 
eae59cc
267daea
 
7f6295c
 
 
 
 
 
17a5ce9
 
 
7f6295c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a5ce9
 
 
7f6295c
267daea
 
7f6295c
 
 
 
 
 
 
 
 
 
 
267daea
7f6295c
 
267daea
7f6295c
 
267daea
7f6295c
 
267daea
7f6295c
 
 
267daea
7f6295c
 
267daea
7f6295c
 
 
267daea
 
 
 
17a5ce9
 
7f6295c
 
267daea
7f6295c
267daea
 
 
 
7f6295c
17a5ce9
267daea
 
 
7f6295c
267daea
7f6295c
267daea
7f6295c
267daea
7f6295c
267daea
7f6295c
267daea
eae59cc
 
267daea
eae59cc
 
267daea
eae59cc
 
 
267daea
eae59cc
 
267daea
 
eae59cc
267daea
7f6295c
267daea
7f6295c
267daea
 
 
 
7f6295c
 
 
267daea
7f6295c
 
 
 
 
 
 
 
267daea
 
 
7f6295c
 
267daea
 
7f6295c
 
 
 
267daea
7f6295c
 
 
 
 
 
 
 
 
 
267daea
 
7f6295c
 
 
 
267daea
7f6295c
 
 
 
267daea
7f6295c
 
 
267daea
 
 
 
 
 
7f6295c
 
267daea
7f6295c
 
 
 
 
 
267daea
7f6295c
 
 
 
 
 
 
 
 
267daea
 
7f6295c
 
 
afa2fb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# mgie_llava.py
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss

from transformers import AutoConfig, AutoModelForCausalLM, \
                         LlamaConfig, LlamaModel, LlamaForCausalLM, \
                         CLIPVisionModel, CLIPImageProcessor

from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast

import os
import diffusers

DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"

class LlavaConfig(LlamaConfig):
    model_type = "llava"

class LlavaLlamaModel(LlamaModel):
    config_class = LlavaConfig

    def __init__(self, config: LlamaConfig):
        super(LlavaLlamaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)

        if hasattr(config, "use_mm_proj"):
            self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        return vision_tower

    def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
                                  pretrain_mm_mlp_adapter=None):
        self.config.mm_vision_tower = vision_tower

        image_processor = CLIPImageProcessor.from_pretrained(vision_tower)

        if not hasattr(self, 'vision_tower'):
            vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
        else:
            vision_tower = self.vision_tower
        vision_tower.requires_grad_(False)

        self.vision_tower = vision_tower

        vision_config = vision_tower.config
        num_patches = (vision_config.image_size // vision_config.patch_size) ** 2

        self.config.use_mm_proj = True
        self.config.mm_hidden_size = vision_config.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer

        if not hasattr(self, 'mm_projector'):
            self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})

        return dict(
            image_processor=image_processor,
            image_token_len=num_patches,
            vision_config=vision_config
        )

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        orig_embeds_params = getattr(self, 'orig_embeds_params', None)
        if orig_embeds_params is not None:
            orig_embeds_params = orig_embeds_params[0]
            with torch.no_grad():
                self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        vision_tower = self.get_vision_tower()
        if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
            with torch.no_grad():
                if type(images) is list:
                    image_features = []
                    for image in images:
                        image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
                        select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
                        select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
                        image_feature = select_hidden_state[:, 1:]
                        image_features.append(image_feature)
                else:
                    image_forward_outs = vision_tower(images.to(vision_tower.dtype), output_hidden_states=True)
                    select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
                    select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
                    image_features = select_hidden_state[:, 1:].to(images.dtype)
            if type(images) is list:
                image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
            else:
                image_features = self.mm_projector(image_features)
            dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
            dummy_image_features = self.mm_projector(dummy_image_features)

            new_input_embeds = []
            cur_image_idx = 0
            for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
                if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
                    cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
                    new_input_embeds.append(cur_input_embeds)
                    cur_image_idx += 1
                    continue
                if vision_tower.config.use_im_start_end:
                    cur_image_features = image_features[cur_image_idx]
                    num_patches = cur_image_features.shape[0]
                    if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
                        raise ValueError("The number of image start tokens and image end tokens should be the same.")
                    image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
                    for image_start_token_pos in image_start_tokens:
                        cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
                        num_patches = cur_image_features.shape[0]
                        if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
                            raise ValueError("The image end token should follow the image start token.")
                        if orig_embeds_params is not None:
                            cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
                        else:
                            cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
                        cur_image_idx += 1
                    new_input_embeds.append(cur_new_input_embeds)
                else:
                    cur_image_features = image_features[cur_image_idx]
                    num_patches = cur_image_features.shape[0]
                    if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
                        raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
                    masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
                    mask_index_start = masked_indices[0]
                    if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
                        raise ValueError("The image patch tokens should be consecutive.")
                    if orig_embeds_params is not None:
                        cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
                    else:
                        cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
                    new_input_embeds.append(cur_new_input_embeds)
                    cur_image_idx += 1
            inputs_embeds = torch.stack(new_input_embeds, dim=0)

        return super(LlavaLlamaModel, self).forward(
            input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
            inputs_embeds=inputs_embeds, use_cache=use_cache,
            output_attentions=output_attentions, output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )

class EditMapper(nn.Module):
    def __init__(self):
        super().__init__()

        self.llm2hid = nn.Linear(4096, 512)
        self.query = nn.Parameter(torch.randn(1, 77, 512))
        self.mapper = nn.Transformer(batch_first=True, norm_first=True,
                                     d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
                                     dim_feedforward=2048, dropout=0.0)
        self.hid2feat = nn.Linear(512, 768)

    def forward(self, llm, emb):
        hid = self.llm2hid(llm+emb)
        hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
        feat = self.hid2feat(hid)

        return feat

class LlavaLlamaForCausalLM(LlamaForCausalLM):
    config_class = LlavaConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)
        self.model = LlavaLlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.edit_head = EditMapper()

        self.scheduler = diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler')
        self.vae = diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae')
        self.unet = diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')

        self.vae.requires_grad_(False)
        self.unet.register_to_config(in_channels=8)
        with torch.no_grad():
            conv = torch.nn.Conv2d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
            conv.weight.zero_()
            conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
            self.unet.conv_in = conv

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def get_vision_tower(self):
        model = self.get_model()
        vision_tower = model.vision_tower
        return vision_tower

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
        p2p_inp=None, p2p_ans=None
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            images=images
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model/pipeline parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if labels is not None:
            llm = []
            for i in range(labels.shape[0]):
                try:
                    p = labels[i].data.cpu().tolist().index(32003)-1
                except:
                    p = len(labels[i])-9
                p = min(len(hidden_states[i])-9, p)
                llm.append(hidden_states[i][p:p+8].unsqueeze(0))
            llm = torch.cat(llm, dim=0)
            hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))

            B, DROP = labels.shape[0], 0.05

            hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
                                      self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))

            with torch.no_grad():
                lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
                lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
                                    torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]

            noise = torch.randn_like(lat_ans)
            ts = torch.randint(0, self.scheduler.config.num_train_timesteps, (B, ), device=noise.device).long()
            lat_noise = self.scheduler.add_noise(lat_ans, noise, ts)

            prob = torch.rand(B, device=lat_ans.device)
            mask = (prob<(DROP*2)).reshape(B, 1, 1)
            hid_edit = torch.where(mask, hid_null, hid_edit)
            mask = (1.0-((prob>=DROP).to(lat_inp.dtype)*(prob<(DROP*3)).to(lat_inp.dtype))).reshape(B, 1, 1, 1)
            lat_inp *= mask

            # Progressive Feature Blending
            beta_1, beta_2 = 0.7, 0.3
            visual_features = lat_inp  # Assuming lat_inp represents the visual features
            B_1 = beta_1 * hid_edit + (1 - beta_1) * visual_features
            B_2 = beta_2 * hid_edit + (1 - beta_2) * visual_features

            # Cross-Attention Masking
            attention_scores = torch.matmul(hid_edit, hid_edit.transpose(-1, -2))
            mask = torch.zeros_like(hid_edit)
            mask[:, 3:5] = 1.0  # Emphasize central elements (e.g., "hat", "blue")
            masked_attention_scores = attention_scores * mask
            hid_edit = torch.matmul(F.softmax(masked_attention_scores, dim=-1), hid_edit)

            # Use blended features in subsequent processing
            hid_edit = B_1 + B_2

            out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample

            loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
            if int(os.environ['LOCAL_RANK'])==0:
                print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
            loss = loss_ce+loss_edit*0.5

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "images": kwargs.get("images", None),
            }
        )
        return model_inputs

    def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
                                    tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
        vision_config = self.get_vision_tower().config
        vision_config.use_im_start_end = mm_use_im_start_end
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        self.resize_token_embeddings(len(tokenizer))

        if mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))
            vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if tune_mm_mlp_adapter:
                self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: input_embeddings.shape. Number of new tokens: num_new_tokens.")

        vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]

AutoConfig.register("llava", LlavaConfig)
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)