Spaces:
Running
Running
File size: 5,172 Bytes
75b9522 69a0c81 75b9522 fd9da3b 75b9522 fd9da3b 75b9522 96cfc8d 75b9522 fd9da3b 75b9522 96cfc8d 7acf720 75b9522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
from pathlib import Path
from functools import partial
from joeynmt.prediction import predict
from joeynmt.helpers import (
check_version,
load_checkpoint,
load_config,
parse_train_args,
resolve_ckpt_path,
)
from joeynmt.model import build_model
from joeynmt.tokenizers import build_tokenizer
from joeynmt.vocabulary import build_vocab
from joeynmt.datasets import build_dataset
import gradio as gr
# INPUT = "سلاو لە ناو گلی کرد"
cfg_file = 'config.yaml'
ckpt = './models/Sorani-Arabic/best.ckpt'
cfg = load_config(Path(cfg_file))
# parse and validate cfg
model_dir, load_model, device, n_gpu, num_workers, _, fp16 = parse_train_args(
cfg["training"], mode="prediction")
test_cfg = cfg["testing"]
src_cfg = cfg["data"]["src"]
trg_cfg = cfg["data"]["trg"]
load_model = load_model if ckpt is None else Path(ckpt)
ckpt = resolve_ckpt_path(load_model, model_dir)
src_vocab, trg_vocab = build_vocab(cfg["data"], model_dir=model_dir)
model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
# load model state from disk
model_checkpoint = load_checkpoint(ckpt, device=device)
model.load_state_dict(model_checkpoint["model_state"])
if device.type == "cuda":
model.to(device)
tokenizer = build_tokenizer(cfg["data"])
sequence_encoder = {
src_cfg["lang"]: partial(src_vocab.sentences_to_ids, bos=False, eos=True),
trg_cfg["lang"]: None,
}
test_cfg["batch_size"] = 1 # CAUTION: this will raise an error if n_gpus > 1
test_cfg["batch_type"] = "sentence"
test_data = build_dataset(
dataset_type="stream",
path=None,
src_lang=src_cfg["lang"],
trg_lang=trg_cfg["lang"],
split="test",
tokenizer=tokenizer,
sequence_encoder=sequence_encoder,
)
# test_data.set_item(INPUT.rstrip())
def _translate_data(test_data, cfg=test_cfg):
"""Translates given dataset, using parameters from outer scope."""
_, _, hypotheses, trg_tokens, trg_scores, _ = predict(
model=model,
data=test_data,
compute_loss=False,
device=device,
n_gpu=n_gpu,
normalization="none",
num_workers=num_workers,
cfg=cfg,
fp16=fp16,
)
return hypotheses[0]
def normalize(text, language_script):
test_data.set_item(text)
result = _translate_data(test_data)
return result
title = "Script Normalization for Unconventional Writing"
description = """
<ul>
<li>"<em>mar7aba!</em>"</li>
<li>"<em>هاو ئار یوو؟</em>"</li>
<li>"<em>Μπιάνβενου α σετ ντεμό!</em>"</li>
</ul>
<p>What all these sentences are in common? Being greeted in Arabic with "<em>mar7aba</em>" written in the Latin script, then asked how you are ("<em>هاو ئار یوو؟</em>") in English using the Perso-Arabic script of Kurdish and then, welcomed to this demo in French ("<em>Μπιάνβενου α σετ ντεμό!</em>") written in Greek script. All these sentences are written in an <strong>unconventional</strong> script.</p>
<p>Although you may find these sentences risible, unconventional writing is a common practice among millions of speakers in bilingual communities. In our paper entitled "<a href="https://sinaahmadi.github.io/docs/articles/ahmadi2023acl.pdf" target="_blank"><strong>Script Normalization for Unconventional Writing of Under-Resourced Languages in Bilingual Communities</strong></a>", we shed light on this problem and propose an approach to normalize noisy text written in unconventional writing.</p>
<p>This demo deploys a few models that are trained for <strong>the normalization of unconventional writing</strong>. Please note that this tool is not a spell-checker and cannot correct errors beyond character normalization.</p>
For more information, you can check out the project on GitHub too: <a href="https://github.com/sinaahmadi/ScriptNormalization" target="_blank"><strong>https://github.com/sinaahmadi/ScriptNormalization</strong></a>
"""
languages_scripts = {
"Azeri Turkish in Persian": "AzeriTurkish-Persian",
"Central Kurdish in Arabic": "Sorani-Arabic",
"Central Kurdish in Persian": "Sorani-Persian",
"Gilaki in Persian": "Gilaki-Persian",
"Gorani in Arabic": "Gorani-Arabic",
"Gorani in Central Kurdish": "Gorani-Sorani",
"Gorani in Persian": "Gorani-Persian",
"Kashmiri in Urdu": "Kashmiri-Urdu",
"Mazandarani in Persian": "Mazandarani-Persian",
"Northern Kurdish in Arabic": "Kurmanji-Arabic",
"Northern Kurdish in Persian": "Kurmanji-Persian",
"Sindhi in Urdu": "Sindhi-Urdu"
}
examples = [
["ياخوا تةمةن دريژبيت بوئةم ميللةتة", "Central Kurdish in Arabic"],
["سلاو برا جونی؟", "Central Kurdish in Arabic"],
]
demo = gr.Interface(
title=title,
description=description,
fn=normalize,
inputs = [
gr.inputs.Textbox(lines=4, label="Noisy Text"),
gr.Dropdown(label="Language in unconventional script", choices=sorted(list(languages_scripts.keys()))),
],
outputs=gr.outputs.Textbox(label="Normalized Text"),
examples=examples
)
demo.launch()
|