wine_quality / app.py
SimonRaviv's picture
Create app.py
d2b7611
raw
history blame
1.3 kB
import joblib
import os
import warnings
import gradio as gr
from huggingface_hub import hf_hub_download
warnings.filterwarnings("ignore")
TOKEN = os.environ['TOKEN']
REPO_ID = "SimonRaviv/wine-quality"
MODEL_FILENAME = "sklearn_model.joblib"
model_file_path = hf_hub_download(REPO_ID, MODEL_FILENAME, use_auth_token=TOKEN)
model = joblib.load(model_file_path)
def predict(data):
prediction = model.predict(data.to_numpy()).tolist()
prediction = [[p] for p in prediction]
return prediction
headers = [
"fixed acidity",
"volatile acidity",
"citric acid",
"residual sugar",
"chlorides",
"free sulfur dioxide",
"total sulfur dioxide",
"density",
"pH",
"sulphates",
"alcohol",
]
default = [
[7.4, 0.7, 0, 1.9, 0.076, 11, 34, 0.9978, 3.51, 0.56, 9.4],
[7.8, 0.88, 0, 2.6, 0.098, 25, 67, 0.9968, 3.2, 0.68, 9.8],
[7.8, 0.76, 0.04, 2.3, 0.092, 15, 54, 0.997, 3.26, 0.65, 9.8],
]
inputs = gr.inputs.Dataframe(
row_count=(3, "dynamic"),
col_count=(11, "dynamic"),
headers=headers,
default=default)
outputs = gr.outputs.Dataframe(type="numpy", headers=["Quality"])
interface = gr.Interface(
fn=predict,
title="Wine Quality predictor with SKLearn",
inputs=inputs,
outputs=outputs
)
interface.launch()