DiffSinger / usr /task.py
ddd
Add application file
b93970c
import torch
import utils
from .diff.diffusion import GaussianDiffusion
from .diff.net import DiffNet
from tasks.tts.fs2 import FastSpeech2Task
from utils.hparams import hparams
DIFF_DECODERS = {
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']),
}
class DiffFsTask(FastSpeech2Task):
def build_tts_model(self):
mel_bins = hparams['audio_num_mel_bins']
self.model = GaussianDiffusion(
phone_encoder=self.phone_encoder,
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams),
timesteps=hparams['timesteps'],
loss_type=hparams['diff_loss_type'],
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
)
def run_model(self, model, sample, return_output=False, infer=False):
txt_tokens = sample['txt_tokens'] # [B, T_t]
target = sample['mels'] # [B, T_s, 80]
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
uv = sample['uv']
energy = sample['energy']
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
if hparams['pitch_type'] == 'cwt':
cwt_spec = sample[f'cwt_spec']
f0_mean = sample['f0_mean']
f0_std = sample['f0_std']
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph)
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed,
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer)
losses = {}
if 'diff_loss' in output:
losses['mel'] = output['diff_loss']
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
if hparams['use_pitch_embed']:
self.add_pitch_loss(output, sample, losses)
if hparams['use_energy_embed']:
self.add_energy_loss(output['energy_pred'], energy, losses)
if not return_output:
return losses
else:
return losses, output
def _training_step(self, sample, batch_idx, _):
log_outputs = self.run_model(self.model, sample)
total_loss = sum([v for v in log_outputs.values() if isinstance(v, torch.Tensor) and v.requires_grad])
log_outputs['batch_size'] = sample['txt_tokens'].size()[0]
log_outputs['lr'] = self.scheduler.get_lr()[0]
return total_loss, log_outputs
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
outputs = utils.tensors_to_scalars(outputs)
if batch_idx < hparams['num_valid_plots']:
_, model_out = self.run_model(self.model, sample, return_output=True, infer=True)
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'])
return outputs
def build_scheduler(self, optimizer):
return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5)
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx):
if optimizer is None:
return
optimizer.step()
optimizer.zero_grad()
if self.scheduler is not None:
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches'])