SickBoy commited on
Commit
0d6f9e4
1 Parent(s): 9095b42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -13
app.py CHANGED
@@ -26,14 +26,9 @@ model = AutoModelForTokenClassification.from_pretrained("SickBoy/layoutlm_docume
26
 
27
  # load image example
28
  dataset = load_dataset("SickBoy/layout_documents", split="train")
29
- example = dataset[0]
30
- image1 = example["image"]
31
- words = example["tokens"]
32
- boxes = example["bboxes"]
33
- labels = example["ner_tags"]
34
- #Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png")
35
- #Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
36
- #Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")
37
  # define id2label, label2color
38
  #labels = dataset.features['ner_tags'].feature.names
39
  labels = ['O', 'HEADER', 'SUBHEADER', 'TEXTO', 'NUMERAL', 'RESUMEN']
@@ -81,9 +76,9 @@ def process_image(image):
81
  width, height = image.size
82
 
83
  # encode
84
- #encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
85
- encoding = processor(image1, words, boxes=boxes, word_labels=word_labels, return_tensors="pt")
86
- #offset_mapping = encoding.pop('offset_mapping')
87
 
88
  # forward pass
89
  outputs = model(**encoding)
@@ -113,7 +108,7 @@ description = "Invoice Information Extraction - We use Microsoft's LayoutLMv3 tr
113
 
114
  article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
115
 
116
- #examples =[['example1.png'],['example2.png'],['example3.png']]
117
 
118
  css = """.output_image, .input_image {height: 600px !important}"""
119
 
@@ -123,7 +118,7 @@ iface = gr.Interface(fn=process_image,
123
  title=title,
124
  description=description,
125
  article=article,
126
- #examples=examples,
127
  css=css,
128
  analytics_enabled = True, enable_queue=True)
129
 
 
26
 
27
  # load image example
28
  dataset = load_dataset("SickBoy/layout_documents", split="train")
29
+ Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png")
30
+ Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
31
+ Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")
 
 
 
 
 
32
  # define id2label, label2color
33
  #labels = dataset.features['ner_tags'].feature.names
34
  labels = ['O', 'HEADER', 'SUBHEADER', 'TEXTO', 'NUMERAL', 'RESUMEN']
 
76
  width, height = image.size
77
 
78
  # encode
79
+ #encoding = processor(image1, words, boxes=boxes, word_labels=word_labels, return_tensors="pt")
80
+ encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
81
+ offset_mapping = encoding.pop('offset_mapping')
82
 
83
  # forward pass
84
  outputs = model(**encoding)
 
108
 
109
  article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
110
 
111
+ examples =[['example1.png'],['example2.png'],['example3.png']]
112
 
113
  css = """.output_image, .input_image {height: 600px !important}"""
114
 
 
118
  title=title,
119
  description=description,
120
  article=article,
121
+ examples=examples,
122
  css=css,
123
  analytics_enabled = True, enable_queue=True)
124