World_News / app.py
Shreyas94's picture
Update app.py
c19b837 verified
raw
history blame
3.43 kB
import gradio as gr
from transformers import pipeline
from bs4 import BeautifulSoup
import requests
from googlesearch import search
import logging
# Configure logging
logging.basicConfig(level=logging.DEBUG)
def summarize_news(query, num_results=3):
logging.debug(f"Query received: {query}")
logging.debug(f"Number of results requested: {num_results}")
# Initialize summarization pipeline with a specific model
logging.debug("Initializing summarization pipeline...")
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
# Search for news articles
logging.debug("Searching for news articles...")
search_results = search(query, num_results=num_results)
articles = []
logging.debug(f"Search results: {search_results}")
for url in search_results:
try:
logging.debug(f"Fetching content from URL: {url}")
# Fetch the content of the news article
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
results = soup.find_all(['h1', 'p'])
text = [result.text for result in results]
ARTICLE = ' '.join(text)
# Chunk the article text
logging.debug("Chunking the article text...")
max_chunk = 500
ARTICLE = ARTICLE.replace('.', '.<eos>')
ARTICLE = ARTICLE.replace('?', '?<eos>')
ARTICLE = ARTICLE.replace('!', '!<eos>')
sentences = ARTICLE.split('<eos>')
current_chunk = 0
chunks = []
for sentence in sentences:
if len(chunks) == current_chunk + 1:
if len(chunks[current_chunk]) + len(sentence.split(' ')) <= max_chunk:
chunks[current_chunk].extend(sentence.split(' '))
else:
current_chunk += 1
chunks.append(sentence.split(' '))
else:
chunks.append(sentence.split(' '))
for chunk_id in range(len(chunks)):
chunks[chunk_id] = ' '.join(chunks[chunk_id])
logging.debug(f"Chunks created: {chunks}")
# Summarize the chunks
logging.debug("Summarizing the chunks...")
summaries = summarizer(chunks, max_length=120, min_length=30, do_sample=False)
summary_text = " ".join([summary['summary_text'] for summary in summaries])
articles.append((url, summary_text))
logging.debug(f"Summary for URL {url}: {summary_text}")
except Exception as e:
logging.error(f"Error processing URL {url}: {e}")
continue
logging.debug(f"Final summarized articles: {articles}")
return articles
def format_output(articles):
formatted_text = ""
for url, summary in articles:
formatted_text += f"URL: {url}\nSummary: {summary}\n\n"
return formatted_text
iface = gr.Interface(
fn=lambda query, num_results: format_output(summarize_news(query, num_results)),
inputs=[gr.inputs.Textbox(label="Query"), gr.inputs.Slider(minimum=1, maximum=10, default=3, label="Number of Results")],
outputs="text",
title="News Summarizer",
description="Enter a query to get summarized versions of the top news articles."
)
if __name__ == "__main__":
logging.debug("Launching Gradio interface...")
iface.launch()