Shreyas094 commited on
Commit
dcdc8ef
·
verified ·
1 Parent(s): 12fb7a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -81
app.py CHANGED
@@ -15,8 +15,6 @@ from langchain_core.documents import Document
15
  from huggingface_hub import InferenceClient
16
  import inspect
17
  import logging
18
- import tempfile
19
- import shutil
20
 
21
 
22
  # Set up basic configuration for logging
@@ -48,19 +46,19 @@ llama_parser = LlamaParse(
48
  language="en",
49
  )
50
 
51
- def load_document(file_path: str, parser: str = "llamaparse") -> List[Document]:
52
  """Loads and splits the document into pages."""
53
  if parser == "pypdf":
54
- loader = PyPDFLoader(file_path)
55
  return loader.load_and_split()
56
  elif parser == "llamaparse":
57
  try:
58
- documents = llama_parser.load_data(file_path)
59
- return [Document(page_content=doc.text, metadata={"source": file_path}) for doc in documents]
60
  except Exception as e:
61
  print(f"Error using Llama Parse: {str(e)}")
62
  print("Falling back to PyPDF parser")
63
- loader = PyPDFLoader(file_path)
64
  return loader.load_and_split()
65
  else:
66
  raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
@@ -87,29 +85,13 @@ def update_vectors(files, parser):
87
  for file in files:
88
  logging.info(f"Processing file: {file.name}")
89
  try:
90
- # Create a temporary file
91
- with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf', mode='wb') as temp_file:
92
- # Write the content to the temporary file
93
- temp_file.write(file.name.encode('utf-8')) # Write the file path
94
- temp_file_path = temp_file.name
95
-
96
- # Save the uploaded file
97
- os.makedirs("uploaded_files", exist_ok=True)
98
- file_path = os.path.join("uploaded_files", os.path.basename(file.name))
99
- shutil.copy(file.name, file_path) # Copy the actual file
100
-
101
- # Remove the temporary file
102
- os.unlink(temp_file_path)
103
-
104
- data = load_document(file_path, parser)
105
  logging.info(f"Loaded {len(data)} chunks from {file.name}")
106
- for chunk in data:
107
- logging.info(f"Chunk content preview: {chunk.page_content[:100]}...") # Log first 100 characters of each chunk
108
  all_data.extend(data)
109
  total_chunks += len(data)
110
  # Append new documents instead of replacing
111
- if not any(doc["name"] == os.path.basename(file.name) for doc in uploaded_documents):
112
- uploaded_documents.append({"name": os.path.basename(file.name), "selected": True})
113
  logging.info(f"Added new document to uploaded_documents: {file.name}")
114
  else:
115
  logging.info(f"Document already exists in uploaded_documents: {file.name}")
@@ -118,10 +100,16 @@ def update_vectors(files, parser):
118
 
119
  logging.info(f"Total chunks processed: {total_chunks}")
120
 
121
- if all_data:
 
 
 
 
 
122
  database = FAISS.from_documents(all_data, embed)
123
- database.save_local("faiss_database")
124
- logging.info("FAISS database saved")
 
125
 
126
  return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
127
  choices=[doc["name"] for doc in uploaded_documents],
@@ -129,52 +117,6 @@ def update_vectors(files, parser):
129
  label="Select documents to query"
130
  )
131
 
132
- def delete_selected_files(selected_files):
133
- global uploaded_documents
134
- if not selected_files:
135
- return "No files selected for deletion.", document_selector
136
-
137
- deleted_files = []
138
- for file_name in selected_files:
139
- # Remove the file from uploaded_documents
140
- uploaded_documents = [doc for doc in uploaded_documents if doc["name"] != file_name]
141
-
142
- # Delete the file from the file system if it exists
143
- file_path = os.path.join("uploaded_files", file_name)
144
- if os.path.exists(file_path):
145
- os.remove(file_path)
146
-
147
- deleted_files.append(file_name)
148
-
149
- # Update the FAISS database
150
- update_faiss_database()
151
-
152
- remaining_files = [doc["name"] for doc in uploaded_documents]
153
- return f"Deleted files: {', '.join(deleted_files)}", gr.CheckboxGroup(choices=remaining_files, value=remaining_files, label="Select documents to query")
154
-
155
- def update_faiss_database():
156
- global uploaded_documents
157
-
158
- embed = get_embeddings()
159
- all_data = []
160
-
161
- for doc in uploaded_documents:
162
- file_path = os.path.join("uploaded_files", doc["name"])
163
- if os.path.exists(file_path):
164
- data = load_document(file_path, parser="llamaparse") # or use your preferred parser
165
- all_data.extend(data)
166
-
167
- if all_data:
168
- database = FAISS.from_documents(all_data, embed)
169
- database.save_local("faiss_database")
170
- logging.info("FAISS database updated after deletion")
171
- else:
172
- # If no documents left, remove the FAISS database
173
- if os.path.exists("faiss_database"):
174
- import shutil
175
- shutil.rmtree("faiss_database")
176
- logging.info("All documents deleted, FAISS database removed")
177
-
178
  def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
179
  print(f"Starting generate_chunked_response with {num_calls} calls")
180
  full_response = ""
@@ -305,6 +247,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
305
  logging.info(f"User Query: {message}")
306
  logging.info(f"Model Used: {model}")
307
  logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
 
308
  logging.info(f"Selected Documents: {selected_docs}")
309
 
310
  try:
@@ -322,7 +265,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
322
 
323
  # Filter relevant documents based on user selection
324
  all_relevant_docs = retriever.get_relevant_documents(message)
325
- relevant_docs = [doc for doc in all_relevant_docs if os.path.basename(doc.metadata["source"]) in selected_docs]
326
 
327
  if not relevant_docs:
328
  yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
@@ -460,12 +403,8 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
460
  relevant_docs = retriever.get_relevant_documents(query)
461
  logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
462
 
463
- # Log the sources of all retrieved documents
464
- for doc in relevant_docs:
465
- logging.info(f"Retrieved document source: {doc.metadata['source']}")
466
-
467
  # Filter relevant_docs based on selected documents
468
- filtered_docs = [doc for doc in relevant_docs if os.path.basename(doc.metadata["source"]) in selected_docs]
469
  logging.info(f"Number of filtered documents: {len(filtered_docs)}")
470
 
471
  if not filtered_docs:
 
15
  from huggingface_hub import InferenceClient
16
  import inspect
17
  import logging
 
 
18
 
19
 
20
  # Set up basic configuration for logging
 
46
  language="en",
47
  )
48
 
49
+ def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
50
  """Loads and splits the document into pages."""
51
  if parser == "pypdf":
52
+ loader = PyPDFLoader(file.name)
53
  return loader.load_and_split()
54
  elif parser == "llamaparse":
55
  try:
56
+ documents = llama_parser.load_data(file.name)
57
+ return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
58
  except Exception as e:
59
  print(f"Error using Llama Parse: {str(e)}")
60
  print("Falling back to PyPDF parser")
61
+ loader = PyPDFLoader(file.name)
62
  return loader.load_and_split()
63
  else:
64
  raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
 
85
  for file in files:
86
  logging.info(f"Processing file: {file.name}")
87
  try:
88
+ data = load_document(file, parser)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  logging.info(f"Loaded {len(data)} chunks from {file.name}")
 
 
90
  all_data.extend(data)
91
  total_chunks += len(data)
92
  # Append new documents instead of replacing
93
+ if not any(doc["name"] == file.name for doc in uploaded_documents):
94
+ uploaded_documents.append({"name": file.name, "selected": True})
95
  logging.info(f"Added new document to uploaded_documents: {file.name}")
96
  else:
97
  logging.info(f"Document already exists in uploaded_documents: {file.name}")
 
100
 
101
  logging.info(f"Total chunks processed: {total_chunks}")
102
 
103
+ if os.path.exists("faiss_database"):
104
+ logging.info("Updating existing FAISS database")
105
+ database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
106
+ database.add_documents(all_data)
107
+ else:
108
+ logging.info("Creating new FAISS database")
109
  database = FAISS.from_documents(all_data, embed)
110
+
111
+ database.save_local("faiss_database")
112
+ logging.info("FAISS database saved")
113
 
114
  return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
115
  choices=[doc["name"] for doc in uploaded_documents],
 
117
  label="Select documents to query"
118
  )
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
121
  print(f"Starting generate_chunked_response with {num_calls} calls")
122
  full_response = ""
 
247
  logging.info(f"User Query: {message}")
248
  logging.info(f"Model Used: {model}")
249
  logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
250
+
251
  logging.info(f"Selected Documents: {selected_docs}")
252
 
253
  try:
 
265
 
266
  # Filter relevant documents based on user selection
267
  all_relevant_docs = retriever.get_relevant_documents(message)
268
+ relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
269
 
270
  if not relevant_docs:
271
  yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
 
403
  relevant_docs = retriever.get_relevant_documents(query)
404
  logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
405
 
 
 
 
 
406
  # Filter relevant_docs based on selected documents
407
+ filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
408
  logging.info(f"Number of filtered documents: {len(filtered_docs)}")
409
 
410
  if not filtered_docs: