Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,8 @@ import torch
|
|
6 |
from huggingface_hub import login
|
7 |
import os
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
hf_token = os.getenv('My_Token')
|
12 |
|
13 |
# Log in to Hugging Face
|
14 |
login(token=hf_token)
|
@@ -101,10 +100,18 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
101 |
print(f"Total results fetched: {len(all_results)}")
|
102 |
return all_results
|
103 |
|
104 |
-
# Load the Mixtral-8x7B-Instruct model and tokenizer
|
105 |
model_name = 'mistralai/Mistral-7B-Instruct-v0.3'
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
# Check if a GPU is available and if not, fall back to CPU
|
110 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -118,7 +125,7 @@ search_results = google_search(search_term, num_results=3)
|
|
118 |
combined_text = "\n\n".join(result['text'] for result in search_results if result['text'])
|
119 |
|
120 |
# Tokenize the input text
|
121 |
-
inputs = tokenizer(combined_text, return_tensors="pt")
|
122 |
|
123 |
# Generate a response
|
124 |
outputs = model.generate(**inputs, max_length=150, temperature=0.7, top_p=0.9, top_k=50)
|
|
|
6 |
from huggingface_hub import login
|
7 |
import os
|
8 |
|
9 |
+
# Directly assign your Hugging Face token here
|
10 |
+
hf_token = "your_hugging_face_api_token"
|
|
|
11 |
|
12 |
# Log in to Hugging Face
|
13 |
login(token=hf_token)
|
|
|
100 |
print(f"Total results fetched: {len(all_results)}")
|
101 |
return all_results
|
102 |
|
103 |
+
# Load the Mixtral-8x7B-Instruct model and tokenizer with authorization header
|
104 |
model_name = 'mistralai/Mistral-7B-Instruct-v0.3'
|
105 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
106 |
+
|
107 |
+
# Ensure sentencepiece is installed
|
108 |
+
try:
|
109 |
+
import sentencepiece
|
110 |
+
except ImportError:
|
111 |
+
raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.")
|
112 |
+
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
114 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
115 |
|
116 |
# Check if a GPU is available and if not, fall back to CPU
|
117 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
125 |
combined_text = "\n\n".join(result['text'] for result in search_results if result['text'])
|
126 |
|
127 |
# Tokenize the input text
|
128 |
+
inputs = tokenizer(combined_text, return_tensors="pt").to(device)
|
129 |
|
130 |
# Generate a response
|
131 |
outputs = model.generate(**inputs, max_length=150, temperature=0.7, top_p=0.9, top_k=50)
|