Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -323,7 +323,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
323 |
embed = get_embeddings()
|
324 |
if os.path.exists("faiss_database"):
|
325 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
326 |
-
retriever = database.as_retriever(search_kwargs={"k":
|
327 |
|
328 |
# Filter relevant documents based on user selection
|
329 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
@@ -455,33 +455,20 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
455 |
if os.path.exists("faiss_database"):
|
456 |
logging.info("Loading FAISS database")
|
457 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
458 |
-
|
459 |
-
# Log the contents of the FAISS database
|
460 |
-
logging.info(f"FAISS database contains {len(database.docstore._dict)} documents")
|
461 |
-
for doc_id, doc in database.docstore._dict.items():
|
462 |
-
logging.info(f"Document ID: {doc_id}, Source: {doc.metadata['source']}")
|
463 |
else:
|
464 |
logging.warning("No FAISS database found")
|
465 |
yield "No documents available. Please upload PDF documents to answer questions."
|
466 |
return
|
467 |
|
468 |
-
retriever = database.as_retriever(search_kwargs={"k":
|
469 |
logging.info(f"Retrieving relevant documents for query: {query}")
|
470 |
relevant_docs = retriever.get_relevant_documents(query)
|
471 |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
472 |
|
473 |
-
# Log details of retrieved documents
|
474 |
-
for i, doc in enumerate(relevant_docs):
|
475 |
-
logging.info(f"Relevant doc {i}: Source: {doc.metadata['source']}, Content preview: {doc.page_content[:100]}...")
|
476 |
-
|
477 |
# Filter relevant_docs based on selected documents
|
478 |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
479 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
480 |
|
481 |
-
# Log details of filtered documents
|
482 |
-
for i, doc in enumerate(filtered_docs):
|
483 |
-
logging.info(f"Filtered doc {i}: Source: {doc.metadata['source']}, Content preview: {doc.page_content[:100]}...")
|
484 |
-
|
485 |
if not filtered_docs:
|
486 |
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
487 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
@@ -489,56 +476,40 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
489 |
|
490 |
for doc in filtered_docs:
|
491 |
logging.info(f"Document source: {doc.metadata['source']}")
|
492 |
-
logging.info(f"Document content preview: {doc.page_content[:100]}...")
|
493 |
-
|
494 |
-
# Implement a sliding window approach for context
|
495 |
-
max_context_length = 4000 # Adjust based on your model's capacity
|
496 |
-
context_chunks = []
|
497 |
-
current_chunk = ""
|
498 |
-
for doc in filtered_docs:
|
499 |
-
if len(current_chunk) + len(doc.page_content) > max_context_length:
|
500 |
-
context_chunks.append(current_chunk)
|
501 |
-
current_chunk = doc.page_content
|
502 |
-
else:
|
503 |
-
current_chunk += "\n" + doc.page_content
|
504 |
-
if current_chunk:
|
505 |
-
context_chunks.append(current_chunk)
|
506 |
|
507 |
-
|
|
|
508 |
|
509 |
-
|
510 |
-
logging.info(
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
logging.info("Using Hugging Face API")
|
519 |
-
prompt = f"""Using the following context from the PDF documents:
|
520 |
{context_str}
|
521 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
522 |
|
523 |
-
|
524 |
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
|
539 |
-
|
540 |
-
|
541 |
-
logging.info("Finished processing all context chunks")
|
542 |
|
543 |
def vote(data: gr.LikeData):
|
544 |
if data.liked:
|
|
|
323 |
embed = get_embeddings()
|
324 |
if os.path.exists("faiss_database"):
|
325 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
326 |
+
retriever = database.as_retriever(search_kwargs={"k": 10})
|
327 |
|
328 |
# Filter relevant documents based on user selection
|
329 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
|
|
455 |
if os.path.exists("faiss_database"):
|
456 |
logging.info("Loading FAISS database")
|
457 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
|
|
|
|
|
|
|
|
458 |
else:
|
459 |
logging.warning("No FAISS database found")
|
460 |
yield "No documents available. Please upload PDF documents to answer questions."
|
461 |
return
|
462 |
|
463 |
+
retriever = database.as_retriever(search_kwargs={"k": 10})
|
464 |
logging.info(f"Retrieving relevant documents for query: {query}")
|
465 |
relevant_docs = retriever.get_relevant_documents(query)
|
466 |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
467 |
|
|
|
|
|
|
|
|
|
468 |
# Filter relevant_docs based on selected documents
|
469 |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
470 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
471 |
|
|
|
|
|
|
|
|
|
472 |
if not filtered_docs:
|
473 |
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
474 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
|
|
476 |
|
477 |
for doc in filtered_docs:
|
478 |
logging.info(f"Document source: {doc.metadata['source']}")
|
479 |
+
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
|
481 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
482 |
+
logging.info(f"Total context length: {len(context_str)}")
|
483 |
|
484 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
485 |
+
logging.info("Using Cloudflare API")
|
486 |
+
# Use Cloudflare API with the retrieved context
|
487 |
+
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
488 |
+
yield response
|
489 |
+
else:
|
490 |
+
logging.info("Using Hugging Face API")
|
491 |
+
# Use Hugging Face API
|
492 |
+
prompt = f"""Using the following context from the PDF documents:
|
|
|
|
|
493 |
{context_str}
|
494 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
495 |
|
496 |
+
client = InferenceClient(model, token=huggingface_token)
|
497 |
|
498 |
+
response = ""
|
499 |
+
for i in range(num_calls):
|
500 |
+
logging.info(f"API call {i+1}/{num_calls}")
|
501 |
+
for message in client.chat_completion(
|
502 |
+
messages=[{"role": "user", "content": prompt}],
|
503 |
+
max_tokens=10000,
|
504 |
+
temperature=temperature,
|
505 |
+
stream=True,
|
506 |
+
):
|
507 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
508 |
+
chunk = message.choices[0].delta.content
|
509 |
+
response += chunk
|
510 |
+
yield response # Yield partial response
|
511 |
|
512 |
+
logging.info("Finished generating response")
|
|
|
|
|
513 |
|
514 |
def vote(data: gr.LikeData):
|
515 |
if data.liked:
|