Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -18,17 +18,8 @@ import logging
|
|
18 |
import shutil
|
19 |
|
20 |
|
21 |
-
logging
|
22 |
-
|
23 |
-
filename='chatbot.log',
|
24 |
-
filemode='w')
|
25 |
-
|
26 |
-
# Also log to console
|
27 |
-
console = logging.StreamHandler()
|
28 |
-
console.setLevel(logging.INFO)
|
29 |
-
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
30 |
-
console.setFormatter(formatter)
|
31 |
-
logging.getLogger('').addHandler(console)
|
32 |
|
33 |
# Environment variables and configurations
|
34 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
@@ -57,30 +48,24 @@ llama_parser = LlamaParse(
|
|
57 |
)
|
58 |
|
59 |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
60 |
-
|
61 |
if parser == "pypdf":
|
62 |
loader = PyPDFLoader(file.name)
|
63 |
-
|
64 |
elif parser == "llamaparse":
|
65 |
try:
|
66 |
documents = llama_parser.load_data(file.name)
|
67 |
-
|
68 |
except Exception as e:
|
69 |
-
|
70 |
-
|
71 |
loader = PyPDFLoader(file.name)
|
72 |
-
|
73 |
else:
|
74 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
75 |
-
|
76 |
-
logging.info(f"Loaded {len(documents)} chunks from {file.name}")
|
77 |
-
for i, doc in enumerate(documents):
|
78 |
-
logging.debug(f"Chunk {i} content preview: {doc.page_content[:100]}...")
|
79 |
-
|
80 |
-
return documents
|
81 |
|
82 |
def get_embeddings():
|
83 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/
|
84 |
|
85 |
# Add this at the beginning of your script, after imports
|
86 |
DOCUMENTS_FILE = "uploaded_documents.json"
|
@@ -99,71 +84,61 @@ def save_documents(documents):
|
|
99 |
uploaded_documents = load_documents()
|
100 |
|
101 |
# Modify the update_vectors function
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
def add_documents_to_faiss(documents: List[Document], embeddings):
|
106 |
-
logging.info(f"Adding {len(documents)} documents to FAISS database")
|
107 |
-
if os.path.exists("faiss_database"):
|
108 |
-
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
|
109 |
-
logging.info(f"Loaded existing FAISS database with {db.index.ntotal} vectors")
|
110 |
-
initial_size = db.index.ntotal
|
111 |
-
db.add_documents(documents)
|
112 |
-
final_size = db.index.ntotal
|
113 |
-
logging.info(f"FAISS database updated. Initial size: {initial_size}, Final size: {final_size}")
|
114 |
-
else:
|
115 |
-
db = FAISS.from_documents(documents, embeddings)
|
116 |
-
logging.info(f"Created new FAISS database with {db.index.ntotal} vectors")
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
|
128 |
-
logging.info(f"Loaded FAISS database with {db.index.ntotal} vectors")
|
129 |
-
|
130 |
-
# Retrieve documents without filtering first
|
131 |
-
all_docs = db.similarity_search(query, k=20) # Increase k to ensure we get enough documents
|
132 |
-
logging.info(f"Retrieved {len(all_docs)} documents from FAISS")
|
133 |
-
|
134 |
-
# Log all retrieved documents
|
135 |
-
for i, doc in enumerate(all_docs):
|
136 |
-
logging.info(f"Retrieved document {i+1} source: {doc.metadata['source']}")
|
137 |
-
|
138 |
-
# Filter documents based on selected_docs
|
139 |
-
filtered_docs = [doc for doc in all_docs if doc.metadata["source"] in selected_docs]
|
140 |
-
logging.info(f"Filtered to {len(filtered_docs)} documents based on selection")
|
141 |
-
|
142 |
-
return filtered_docs
|
143 |
-
|
144 |
-
def update_vectors(files: List[NamedTemporaryFile], parser: str, embeddings) -> str:
|
145 |
-
all_documents = []
|
146 |
for file in files:
|
147 |
logging.info(f"Processing file: {file.name}")
|
148 |
try:
|
149 |
-
|
150 |
-
if not
|
151 |
logging.warning(f"No chunks loaded from {file.name}")
|
152 |
continue
|
153 |
-
logging.info(f"Loaded {len(
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
except Exception as e:
|
156 |
logging.error(f"Error processing file {file.name}: {str(e)}")
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
161 |
try:
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
except Exception as e:
|
165 |
logging.error(f"Error updating FAISS database: {str(e)}")
|
166 |
-
return f"Error updating vector store: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
def delete_documents(selected_docs):
|
169 |
global uploaded_documents
|
@@ -334,7 +309,6 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
334 |
logging.info(f"User Query: {message}")
|
335 |
logging.info(f"Model Used: {model}")
|
336 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
337 |
-
logging.info(f"Selected Documents: {selected_docs}")
|
338 |
|
339 |
logging.info(f"Selected Documents: {selected_docs}")
|
340 |
|
@@ -480,75 +454,62 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
480 |
embed = get_embeddings()
|
481 |
if os.path.exists("faiss_database"):
|
482 |
logging.info("Loading FAISS database")
|
483 |
-
|
484 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
485 |
-
logging.info(f"FAISS database loaded with {database.index.ntotal} vectors")
|
486 |
-
except Exception as e:
|
487 |
-
logging.error(f"Error loading FAISS database: {str(e)}")
|
488 |
-
yield "Error loading the document database. Please try uploading the documents again."
|
489 |
-
return
|
490 |
else:
|
491 |
logging.warning("No FAISS database found")
|
492 |
yield "No documents available. Please upload PDF documents to answer questions."
|
493 |
return
|
494 |
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
if not filtered_docs:
|
510 |
-
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
511 |
-
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
512 |
-
return
|
513 |
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
|
518 |
-
|
519 |
-
|
520 |
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
|
|
|
|
528 |
{context_str}
|
529 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
except Exception as e:
|
550 |
-
logging.error(f"Error in get_response_from_pdf: {str(e)}")
|
551 |
-
yield f"An error occurred while processing your query: {str(e)}. Please try again or contact support."
|
552 |
|
553 |
def vote(data: gr.LikeData):
|
554 |
if data.liked:
|
|
|
18 |
import shutil
|
19 |
|
20 |
|
21 |
+
# Set up basic configuration for logging
|
22 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Environment variables and configurations
|
25 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
48 |
)
|
49 |
|
50 |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
|
51 |
+
"""Loads and splits the document into pages."""
|
52 |
if parser == "pypdf":
|
53 |
loader = PyPDFLoader(file.name)
|
54 |
+
return loader.load_and_split()
|
55 |
elif parser == "llamaparse":
|
56 |
try:
|
57 |
documents = llama_parser.load_data(file.name)
|
58 |
+
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
|
59 |
except Exception as e:
|
60 |
+
print(f"Error using Llama Parse: {str(e)}")
|
61 |
+
print("Falling back to PyPDF parser")
|
62 |
loader = PyPDFLoader(file.name)
|
63 |
+
return loader.load_and_split()
|
64 |
else:
|
65 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def get_embeddings():
|
68 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
69 |
|
70 |
# Add this at the beginning of your script, after imports
|
71 |
DOCUMENTS_FILE = "uploaded_documents.json"
|
|
|
84 |
uploaded_documents = load_documents()
|
85 |
|
86 |
# Modify the update_vectors function
|
87 |
+
def update_vectors(files, parser):
|
88 |
+
global uploaded_documents
|
89 |
+
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
if not files:
|
92 |
+
logging.warning("No files provided for update_vectors")
|
93 |
+
return "Please upload at least one PDF file.", display_documents()
|
94 |
+
|
95 |
+
embed = get_embeddings()
|
96 |
+
total_chunks = 0
|
97 |
+
|
98 |
+
all_data = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
for file in files:
|
100 |
logging.info(f"Processing file: {file.name}")
|
101 |
try:
|
102 |
+
data = load_document(file, parser)
|
103 |
+
if not data:
|
104 |
logging.warning(f"No chunks loaded from {file.name}")
|
105 |
continue
|
106 |
+
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
107 |
+
all_data.extend(data)
|
108 |
+
total_chunks += len(data)
|
109 |
+
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
110 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
111 |
+
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
112 |
+
else:
|
113 |
+
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
114 |
except Exception as e:
|
115 |
logging.error(f"Error processing file {file.name}: {str(e)}")
|
116 |
|
117 |
+
logging.info(f"Total chunks processed: {total_chunks}")
|
118 |
+
|
119 |
+
if not all_data:
|
120 |
+
logging.warning("No valid data extracted from uploaded files")
|
121 |
+
return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents()
|
122 |
+
|
123 |
try:
|
124 |
+
if os.path.exists("faiss_database"):
|
125 |
+
logging.info("Updating existing FAISS database")
|
126 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
127 |
+
database.add_documents(all_data)
|
128 |
+
else:
|
129 |
+
logging.info("Creating new FAISS database")
|
130 |
+
database = FAISS.from_documents(all_data, embed)
|
131 |
+
|
132 |
+
database.save_local("faiss_database")
|
133 |
+
logging.info("FAISS database saved")
|
134 |
except Exception as e:
|
135 |
logging.error(f"Error updating FAISS database: {str(e)}")
|
136 |
+
return f"Error updating vector store: {str(e)}", display_documents()
|
137 |
+
|
138 |
+
# Save the updated list of documents
|
139 |
+
save_documents(uploaded_documents)
|
140 |
+
|
141 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()
|
142 |
|
143 |
def delete_documents(selected_docs):
|
144 |
global uploaded_documents
|
|
|
309 |
logging.info(f"User Query: {message}")
|
310 |
logging.info(f"Model Used: {model}")
|
311 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
|
|
312 |
|
313 |
logging.info(f"Selected Documents: {selected_docs}")
|
314 |
|
|
|
454 |
embed = get_embeddings()
|
455 |
if os.path.exists("faiss_database"):
|
456 |
logging.info("Loading FAISS database")
|
457 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
else:
|
459 |
logging.warning("No FAISS database found")
|
460 |
yield "No documents available. Please upload PDF documents to answer questions."
|
461 |
return
|
462 |
|
463 |
+
retriever = database.as_retriever()
|
464 |
+
logging.info(f"Retrieving relevant documents for query: {query}")
|
465 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
466 |
+
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
467 |
+
|
468 |
+
# Filter relevant_docs based on selected documents
|
469 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
470 |
+
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
471 |
+
|
472 |
+
if not filtered_docs:
|
473 |
+
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
474 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
475 |
+
return
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
for doc in filtered_docs:
|
478 |
+
logging.info(f"Document source: {doc.metadata['source']}")
|
479 |
+
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
480 |
|
481 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
482 |
+
logging.info(f"Total context length: {len(context_str)}")
|
483 |
|
484 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
485 |
+
logging.info("Using Cloudflare API")
|
486 |
+
# Use Cloudflare API with the retrieved context
|
487 |
+
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
488 |
+
yield response
|
489 |
+
else:
|
490 |
+
logging.info("Using Hugging Face API")
|
491 |
+
# Use Hugging Face API
|
492 |
+
prompt = f"""Using the following context from the PDF documents:
|
493 |
{context_str}
|
494 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
495 |
+
|
496 |
+
client = InferenceClient(model, token=huggingface_token)
|
497 |
+
|
498 |
+
response = ""
|
499 |
+
for i in range(num_calls):
|
500 |
+
logging.info(f"API call {i+1}/{num_calls}")
|
501 |
+
for message in client.chat_completion(
|
502 |
+
messages=[{"role": "user", "content": prompt}],
|
503 |
+
max_tokens=10000,
|
504 |
+
temperature=temperature,
|
505 |
+
stream=True,
|
506 |
+
):
|
507 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
508 |
+
chunk = message.choices[0].delta.content
|
509 |
+
response += chunk
|
510 |
+
yield response # Yield partial response
|
511 |
+
|
512 |
+
logging.info("Finished generating response")
|
|
|
|
|
|
|
|
|
513 |
|
514 |
def vote(data: gr.LikeData):
|
515 |
if data.liked:
|