Spaces:
Paused
Paused
File size: 31,113 Bytes
5090140 28ed44f 177c5b5 28ed44f 0c730b1 10660a7 485898b 10660a7 bb706d3 687c2f0 10660a7 8ac8380 28ed44f 1c310be 28ed44f 7f5b560 177c5b5 f1dc47a 46953d2 8ac8380 28ed44f 7f5b560 8da6a04 46953d2 4d152e0 8da6a04 687c2f0 8da6a04 687c2f0 8da6a04 28ed44f 8da6a04 bb706d3 8da6a04 687c2f0 8da6a04 177c5b5 28ed44f 177c5b5 46953d2 28ed44f 46953d2 177c5b5 8da6a04 0c730b1 28ed44f 8da6a04 687c2f0 8da6a04 32fb8f8 8da6a04 4d152e0 8da6a04 4d152e0 646f8a3 8da6a04 4d152e0 8da6a04 46953d2 177c5b5 10660a7 94d22ca 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 4d152e0 10660a7 1dc5b0f 10660a7 4d152e0 1dc5b0f 10660a7 1dc5b0f 4d152e0 10660a7 4d152e0 10660a7 1dc5b0f 8b01918 1dc5b0f 8b01918 4d152e0 8b01918 10660a7 4d152e0 5f3ea63 4d152e0 201ffe7 4d152e0 f630f04 a89fe32 f630f04 a89fe32 201ffe7 773f976 4d152e0 27b795a 773f976 5f3ea63 773f976 5f3ea63 4d152e0 27b795a 4d152e0 5f3ea63 f630f04 a89fe32 8ac8380 eac1164 8ac8380 5f3ea63 f630f04 a89fe32 8ac8380 1f8184f 5f3ea63 a89fe32 eac1164 1f8184f a89fe32 5f3ea63 773f976 27b795a 4d152e0 a89fe32 485898b 8ac8380 485898b 4d152e0 5f3ea63 1f8184f 5f3ea63 773f976 5f3ea63 201ffe7 f96e8a8 d8501de f96e8a8 b19228b f96e8a8 b19228b f96e8a8 b19228b f96e8a8 d8501de 20324a5 f96e8a8 773f976 f96e8a8 773f976 4d152e0 1f8184f a89fe32 eac1164 f1dc47a eac1164 1f8184f 8ac8380 1f8184f 8ac8380 4d152e0 f1dc47a 1f8184f f88e213 4d152e0 8ac8380 adc46bd 8ac8380 adc46bd 8ac8380 adc46bd 8ac8380 adc46bd 8ac8380 eac1164 8ac8380 697d921 8ac8380 eac1164 4d152e0 46953d2 f080583 8b01918 d23826b 8f325c3 8b01918 4d152e0 8f325c3 4d152e0 8f325c3 4d152e0 ea51797 4d152e0 8f325c3 4d152e0 8f325c3 485898b 4d152e0 ee5661b 4d152e0 485898b 4d152e0 6a8b63b 8f325c3 8b01918 8f325c3 8b01918 8f325c3 f080583 4d152e0 8b01918 4d152e0 8f325c3 8b01918 f080583 46953d2 8da6a04 8b01918 ee5661b 8b01918 ee5661b 8b01918 ee5661b 0650b3a 8da6a04 0c730b1 8da6a04 46953d2 8da6a04 46953d2 8da6a04 01447cf 8b01918 28ed44f 4d152e0 8da6a04 0f075d7 8b01918 8da6a04 0f075d7 8b01918 4d152e0 8b01918 4d152e0 03d36e5 773f976 01447cf 773f976 f96e8a8 773f976 4d152e0 8b01918 8da6a04 4d152e0 8b01918 8da6a04 8b01918 697d921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import feedparser
import urllib.parse
from tempfile import NamedTemporaryFile
from typing import List
from bs4 import BeautifulSoup
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceHub
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_core.documents import Document
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from openpyxl import load_workbook
from openpyxl.utils.dataframe import dataframe_to_rows
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
# Memory database to store question-answer pairs
memory_database = {}
conversation_history = []
news_database = []
def load_and_split_document_basic(file):
"""Loads and splits the document into pages."""
loader = PyPDFLoader(file.name)
data = loader.load_and_split()
return data
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]:
"""Loads and splits the document into chunks."""
loader = PyPDFLoader(file.name)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
)
chunks = text_splitter.split_documents(pages)
return chunks
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def create_or_update_database(data, embeddings):
if os.path.exists("faiss_database"):
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
db.add_documents(data)
else:
db = FAISS.from_documents(data, embeddings)
db.save_local("faiss_database")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def get_similarity(text1, text2):
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0]
prompt = """
Answer the question based on the following information:
Conversation History:
{history}
Context from documents:
{context}
Current Question: {question}
If the question is referring to the conversation history, use that information to answer.
If the question is not related to the conversation history, use the context from documents to answer.
If you don't have enough information to answer, say so.
Provide a concise and direct answer to the question:
"""
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
full_response = ""
for i in range(max_chunks):
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
chunk = chunk.strip()
if chunk.endswith((".", "!", "?")):
full_response += chunk
break
full_response += chunk
return full_response.strip()
def manage_conversation_history(question, answer, history, max_history=5):
history.append({"question": question, "answer": answer})
if len(history) > max_history:
history.pop(0)
return history
def is_related_to_history(question, history, threshold=0.3):
if not history:
return False
history_text = " ".join([f"{h['question']} {h['answer']}" for h in history])
similarity = get_similarity(question, history_text)
return similarity > threshold
def extract_text_from_webpage(html):
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract() # Remove scripts and styles
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit
print(f"Starting Google search for term: '{term}'")
with requests.Session() as session:
while start < num_results:
try:
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
print(f"Successfully retrieved search results page (start={start})")
except requests.exceptions.RequestException as e:
print(f"Error retrieving search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No results found on this page")
break
print(f"Found {len(result_block)} results on this page")
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Processing link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": visible_text})
print(f"Successfully extracted text from {link}")
except requests.exceptions.RequestException as e:
print(f"Error retrieving webpage content: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found for this result")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Search completed. Total results: {len(all_results)}")
print("Search results:")
for i, result in enumerate(all_results, 1):
print(f"Result {i}:")
print(f" Link: {result['link']}")
if result['text']:
print(f" Text: {result['text'][:100]}...") # Print first 100 characters
else:
print(" Text: None")
print("End of search results")
if not all_results:
print("No search results found. Returning a default message.")
return [{"link": None, "text": "No information found in the web search results."}]
return all_results
def fetch_google_news_rss(query, num_results=10):
base_url = "https://news.google.com/rss/search"
params = {
"q": query,
"hl": "en-US",
"gl": "US",
"ceid": "US:en"
}
url = f"{base_url}?{urllib.parse.urlencode(params)}"
try:
feed = feedparser.parse(url)
articles = []
for entry in feed.entries[:num_results]:
article = {
"published_date": entry.get("published", "N/A"),
"title": entry.get("title", "N/A"),
"url": entry.get("link", "N/A"),
"content": entry.get("summary", "N/A")
}
articles.append(article)
return articles
except Exception as e:
print(f"Error fetching news: {str(e)}")
return []
def summarize_news_content(content, model):
prompt_template = """
Summarize the following news article in a concise manner:
{content}
Summary:
"""
prompt = ChatPromptTemplate.from_template(prompt_template)
formatted_prompt = prompt.format(content=content)
full_response = generate_chunked_response(model, formatted_prompt, max_tokens=200)
# Extract only the summary part
summary_parts = full_response.split("Summary:")
if len(summary_parts) > 1:
summary = summary_parts[-1].strip()
else:
summary = full_response.strip()
# Create a cleaned version of the summary
lines = summary.split('\n')
cleaned_lines = [line for line in lines if not line.strip().startswith(("Human:", "Assistant:", "Summary:"))]
cleaned_summary = ' '.join(cleaned_lines).strip()
return summary, cleaned_summary
def process_news(query, temperature, top_p, repetition_penalty, news_source):
model = get_model(temperature, top_p, repetition_penalty)
embed = get_embeddings()
if news_source == "Google News RSS":
articles = fetch_google_news_rss(query)
elif news_source == "Golomt Bank":
articles = fetch_golomt_bank_news()
else:
return "Invalid news source selected."
if not articles:
return f"No news articles found for the given {news_source}."
processed_articles = []
for article in articles:
try:
# Remove HTML tags from content
clean_content = BeautifulSoup(article["content"], "html.parser").get_text()
# If content is very short, use the title as content
if len(clean_content) < 50:
clean_content = article["title"]
full_summary, cleaned_summary = summarize_news_content(clean_content, model)
relevance_score = calculate_relevance_score(cleaned_summary, model)
print(f"Relevance score for article '{article['title']}': {relevance_score}") # Debug print
processed_article = {
"published_date": article["published_date"],
"title": article["title"],
"url": article["url"],
"content": clean_content,
"summary": full_summary,
"cleaned_summary": cleaned_summary,
"relevance_score": relevance_score
}
processed_articles.append(processed_article)
except Exception as e:
print(f"Error processing article: {str(e)}")
# Debug print
print("Processed articles:")
for article in processed_articles:
print(f"Title: {article['title']}, Score: {article['relevance_score']}")
if not processed_articles:
return f"Failed to process any news articles from {news_source}. Please try again or check the summarization process."
# Add processed articles to the database
docs = [Document(page_content=article["cleaned_summary"], metadata={
"source": article["url"],
"title": article["title"],
"published_date": article["published_date"],
"relevance_score": article["relevance_score"]
}) for article in processed_articles]
try:
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(docs)
else:
database = FAISS.from_documents(docs, embed)
database.save_local("faiss_database")
# Update news_database for excel export
global news_database
news_database = processed_articles # Directly assign the processed articles
print("Updated news_database:")
for article in news_database:
print(f"Title: {article['title']}, Score: {article['relevance_score']}")
return f"Processed and added {len(processed_articles)} news articles from {news_source} to the database."
except Exception as e:
return f"Error adding articles to the database: {str(e)}"
def fetch_articles_from_page(url):
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('div', class_='entry-post gt-box-shadow-2')
return articles, soup
def fetch_articles_from_page(url):
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('div', class_='entry-post gt-box-shadow-2')
return articles, soup
def extract_articles(articles):
article_data = []
for article in articles:
title_div = article.find('h2', class_='entry-title')
title = title_div.get_text(strip=True) if title_div else "No Title"
date_div = article.find('div', class_='entry-date gt-meta')
date = date_div.get_text(strip=True) if date_div else "No Date"
link_tag = article.find('a')
link = link_tag['href'] if link_tag else "No Link"
if not link.startswith('http'):
link = "https://golomtbank.com" + link
article_response = requests.get(link)
article_response.raise_for_status()
article_soup = BeautifulSoup(article_response.content, 'html.parser')
article_content_div = article_soup.find('div', class_='entry-content')
article_content = article_content_div.get_text(strip=True) if article_content_div else "No content found"
article_data.append({
'title': title,
'date': date,
'link': link,
'content': article_content
})
return article_data
def fetch_golomt_bank_news(num_results=20):
base_url = "https://golomtbank.com/en/rnews"
current_page_url = base_url
all_articles = []
try:
while len(all_articles) < num_results:
print(f"Fetching articles from: {current_page_url}")
articles, soup = fetch_articles_from_page(current_page_url)
if not articles:
print("No articles found on this page.")
break
all_articles.extend(extract_articles(articles))
print(f"Total articles fetched so far: {len(all_articles)}")
if len(all_articles) >= num_results:
all_articles = all_articles[:num_results]
break
next_page_link = soup.find('a', class_='next')
if not next_page_link:
print("No next page link found.")
break
current_page_url = next_page_link['href']
if not current_page_url.startswith('http'):
current_page_url = "https://golomtbank.com" + current_page_url
return [
{
"published_date": article['date'],
"title": article['title'],
"url": article['link'],
"content": article['content']
} for article in all_articles
]
except Exception as e:
print(f"Error fetching Golomt Bank news: {str(e)}")
return []
def export_news_to_excel():
global news_database
if not news_database:
return "No articles to export. Please fetch news first."
print("Exporting the following articles:")
for article in news_database:
print(f"Title: {article['title']}, Score: {article.get('relevance_score', 'N/A')}")
df = pd.DataFrame(news_database)
# Ensure relevance_score is present and convert to float
if 'relevance_score' not in df.columns:
df['relevance_score'] = 0.0
else:
df['relevance_score'] = pd.to_numeric(df['relevance_score'], errors='coerce').fillna(0.0)
# Use the cleaned summary for the Excel export
if 'cleaned_summary' in df.columns:
df['summary'] = df['cleaned_summary']
df = df.drop(columns=['cleaned_summary'])
# Reorder columns to put relevance_score after summary
columns = ['published_date', 'title', 'url', 'content', 'summary', 'relevance_score']
df = df[[col for col in columns if col in df.columns]]
print("Final DataFrame before export:")
print(df[['title', 'relevance_score']])
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
df.to_excel(excel_path, index=False, engine='openpyxl')
print(f"Excel file saved to: {excel_path}")
print("Final relevance scores before export:")
for article in news_database:
print(f"Title: {article['title']}, Score: {article.get('relevance_score', 'N/A')}")
return excel_path
def calculate_relevance_score(summary, model):
prompt_template = PromptTemplate(
input_variables=["summary"],
template="""You are a financial analyst tasked with providing a relevance score to news summaries.
The score should be based on the financial significance and impact of the news.
Consider the following factors when assigning relevance:
- Earnings reports and financial performance
- Debt issuance or restructuring
- Mergers, acquisitions, or divestments
- Changes in key leadership (e.g., CEO, CFO)
- Regulatory changes or legal issues affecting the company
- Major product launches or market expansion
- Significant shifts in market share or competitive landscape
- Macroeconomic factors directly impacting the company or industry
- Stock price movements and trading volume changes
- Dividend announcements or changes in capital allocation
- Credit rating changes
- Material financial events (e.g., bankruptcy, major contracts)
Use the following scoring guide:
- 0.00-0.20: Not relevant to finance or economics
- 0.21-0.40: Slightly relevant, but minimal financial impact
- 0.41-0.60: Moderately relevant, some financial implications
- 0.61-0.80: Highly relevant, significant financial impact
- 0.81-1.00: Extremely relevant, major financial implications
Provide a score between 0.00 and 1.00, where 0.00 is not relevant at all, and 1.00 is extremely relevant from a financial perspective.
Summary: {summary}
Relevance Score:"""
)
chain = LLMChain(llm=model, prompt=prompt_template)
response = chain.run(summary=summary)
print(f"Raw relevance score response: {response}") # Debug print
try:
# Extract the score from the response
score_match = re.search(r'Relevance Score:\s*(\d+\.\d+)', response)
if score_match:
score = float(score_match.group(1))
final_score = min(max(score, 0.00), 1.00) # Ensure the score is between 0.00 and 1.00
print(f"Processed relevance score: {final_score}") # Debug print
return final_score
else:
raise ValueError("No relevance score found in the response")
except ValueError as e:
print(f"Error parsing relevance score: {e}")
return 0.00
def ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss):
global conversation_history
if not question:
return "Please enter a question."
model = get_model(temperature, top_p, repetition_penalty)
embed = get_embeddings()
# Check if the FAISS database exists
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
database = None
if web_search:
search_results = google_search(question)
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
if database is None:
database = FAISS.from_documents(web_docs, embed)
else:
database.add_documents(web_docs)
database.save_local("faiss_database")
context_str = "\n".join([doc.page_content for doc in web_docs])
prompt_template = """
Answer the question based on the following web search results:
Web Search Results:
{context}
Current Question: {question}
If the web search results don't contain relevant information, state that the information is not available in the search results.
Provide a concise and direct answer to the question without mentioning the web search or these instructions:
"""
prompt_val = ChatPromptTemplate.from_template(prompt_template)
formatted_prompt = prompt_val.format(context=context_str, question=question)
elif google_news_rss:
if database is None:
return "No news articles available. Please fetch news articles first."
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(question)
context_str = "\n".join([f"Title: {doc.metadata.get('title', 'N/A')}\nURL: {doc.metadata.get('source', 'N/A')}\nSummary: {doc.page_content}" for doc in relevant_docs])
prompt_template = """
Answer the question based on the following news summaries:
News Summaries:
{context}
Current Question: {question}
If the news summaries don't contain relevant information, state that the information is not available in the news articles.
Provide a concise and direct answer to the question without mentioning the news summaries or these instructions:
"""
prompt_val = ChatPromptTemplate.from_template(prompt_template)
formatted_prompt = prompt_val.format(context=context_str, question=question)
else:
if database is None:
return "No documents available. Please upload documents, enable web search, or fetch news articles to answer questions."
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
if is_related_to_history(question, conversation_history):
context_str = "No additional context needed. Please refer to the conversation history."
else:
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(question)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
prompt_val = ChatPromptTemplate.from_template(prompt)
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
full_response = generate_chunked_response(model, formatted_prompt)
# Extract only the part after the last occurrence of a prompt-like sentence
answer_patterns = [
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
r"Provide a concise and direct answer to the question without mentioning the news summaries or these instructions:",
r"Provide a concise and direct answer to the question:",
r"Answer:"
]
for pattern in answer_patterns:
match = re.split(pattern, full_response, flags=re.IGNORECASE)
if len(match) > 1:
answer = match[-1].strip()
break
else:
# If no pattern is found, return the full response
answer = full_response.strip()
if not web_search and not google_news_rss:
memory_database[question] = answer
conversation_history = manage_conversation_history(question, answer, conversation_history)
return answer
def update_vectors(files, use_recursive_splitter):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
if use_recursive_splitter:
data = load_and_split_document_recursive(file)
else:
data = load_and_split_document_basic(file)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
def extract_db_to_excel():
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
documents = database.docstore._dict.values()
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
df = pd.DataFrame(data)
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
df.to_excel(excel_path, index=False)
return excel_path
def export_memory_db_to_excel():
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()]
df_memory = pd.DataFrame(data)
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history]
df_history = pd.DataFrame(data_history)
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
df_memory.to_excel(writer, sheet_name='Memory Database', index=False)
df_history.to_excel(writer, sheet_name='Conversation History', index=False)
return excel_path
# Gradio interface
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chat with your PDF documents and News")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
update_button = gr.Button("Update Vector Store")
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
question_input = gr.Textbox(label="Ask a question about your documents or news")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
google_news_rss_checkbox = gr.Checkbox(label="Google News RSS", value=False)
with gr.Row():
news_source_dropdown = gr.Dropdown(
choices=["Google News RSS", "Golomt Bank"],
label="Select News Source",
value="Google News RSS"
)
news_query_input = gr.Textbox(label="Enter news query (for Google News RSS)")
fetch_news_button = gr.Button("Fetch News")
news_fetch_output = gr.Textbox(label="News Fetch Status")
def chat(question, history, temperature, top_p, repetition_penalty, web_search, google_news_rss):
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss)
history.append((question, answer))
return "", history
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox, google_news_rss_checkbox], outputs=[question_input, chatbot])
def fetch_news(query, temperature, top_p, repetition_penalty, news_source):
return process_news(query, temperature, top_p, repetition_penalty, news_source)
fetch_news_button.click(
fetch_news,
inputs=[news_query_input, temperature_slider, top_p_slider, repetition_penalty_slider, news_source_dropdown],
outputs=news_fetch_output
)
extract_button = gr.Button("Extract Database to Excel")
excel_output = gr.File(label="Download Excel File")
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
export_memory_button = gr.Button("Export Memory Database to Excel")
memory_excel_output = gr.File(label="Download Memory Excel File")
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output)
export_news_button = gr.Button("Download News Excel File")
news_excel_output = gr.File(label="Download News Excel File")
export_news_button.click(export_news_to_excel, inputs=[], outputs=news_excel_output)
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch() |