File size: 4,424 Bytes
a7932b8
b432dd9
 
 
 
8f71aa4
b432dd9
 
 
 
8f71aa4
 
 
 
d06c0f4
 
458490d
d06c0f4
 
 
 
 
 
 
 
 
8f71aa4
d06c0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458490d
8f71aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d06c0f4
 
8f71aa4
d06c0f4
 
 
 
 
8f71aa4
d06c0f4
 
 
 
 
b432dd9
10e4113
d06c0f4
 
 
 
8f71aa4
d06c0f4
 
 
 
 
10e4113
d06c0f4
302823e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import gradio as gr
from PyPDF2 import PdfReader
import requests
from dotenv import load_dotenv
import tiktoken
# Load environment variables
load_dotenv()
# Get the Hugging Face API token
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("cl100k_base")
def count_tokens(text):
   return len(tokenizer.encode(text))
def summarize_text(text, instructions, agent_name):
   print(f"{agent_name}: Starting summarization")
   API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x22B-Instruct-v0.1"
   headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"}
   payload = {
       "inputs": f"{instructions}\n\nText to summarize:\n{text}",
       "parameters": {"max_length": 500}
   }
   print(f"{agent_name}: Sending request to API")
   response = requests.post(API_URL, headers=headers, json=payload)
   print(f"{agent_name}: Received response from API")
   return response.json()[0]["generated_text"]
def process_pdf(pdf_file, chunk_instructions, window_instructions, final_instructions):
   print("Starting PDF processing")
   # Read PDF
   reader = PdfReader(pdf_file)
   text = ""
   for page in reader.pages:
       text += page.extract_text() + "\n\n"
   print(f"Extracted {len(reader.pages)} pages from PDF")
   # Chunk the text (simple splitting by pages for this example)
   chunks = text.split("\n\n")
   print(f"Split text into {len(chunks)} chunks")
   # Agent 1: Summarize each chunk
   agent1_summaries = []
   for i, chunk in enumerate(chunks):
       print(f"Agent 1: Processing chunk {i+1}/{len(chunks)}")
       summary = summarize_text(chunk, chunk_instructions, "Agent 1")
       agent1_summaries.append(summary)
   print("Agent 1: Finished processing all chunks")
   # Concatenate Agent 1 summaries
   concatenated_summary = "\n\n".join(agent1_summaries)
   print(f"Concatenated Agent 1 summaries (length: {len(concatenated_summary)})")
   print(f"Concatenated Summary:{concatenated_summary}")
   # Sliding window approach
   window_size = 3500  # in tokens
   step_size = 3000  # overlap of 500 tokens
   windows = []
   current_position = 0
   while current_position < len(concatenated_summary):
       window_end = current_position
       window_text = ""
       while count_tokens(window_text) < window_size and window_end < len(concatenated_summary):
           window_text += concatenated_summary[window_end]
           window_end += 1
       windows.append(window_text)
       current_position += step_size
   print(f"Created {len(windows)} windows for intermediate summarization")
   # Intermediate summarization
   intermediate_summaries = []
   for i, window in enumerate(windows):
       print(f"Processing window {i+1}/{len(windows)}")
       summary = summarize_text(window, window_instructions, f"Window {i+1}")
       intermediate_summaries.append(summary)
   # Final summarization
   final_input = "\n\n".join(intermediate_summaries)
   print(f"Final input length: {count_tokens(final_input)} tokens")
   final_summary = summarize_text(final_input, final_instructions, "Agent 2")
   print("Agent 2: Finished final summarization")
   return final_summary
def pdf_summarizer(pdf_file, chunk_instructions, window_instructions, final_instructions):
   if pdf_file is None:
       print("Error: No PDF file uploaded")
       return "Please upload a PDF file."
   try:
       print(f"Starting summarization process for file: {pdf_file.name}")
       summary = process_pdf(pdf_file.name, chunk_instructions, window_instructions, final_instructions)
       print("Summarization process completed successfully")
       return summary
   except Exception as e:
       print(f"An error occurred: {str(e)}")
       return f"An error occurred: {str(e)}"
# Gradio interface
iface = gr.Interface(
   fn=pdf_summarizer,
   inputs=[
       gr.File(label="Upload PDF"),
       gr.Textbox(label="Chunk Instructions", placeholder="Instructions for summarizing each chunk"),
       gr.Textbox(label="Window Instructions", placeholder="Instructions for summarizing each window"),
       gr.Textbox(label="Final Instructions", placeholder="Instructions for final summarization")
   ],
   outputs=gr.Textbox(label="Summary"),
   title="PDF Earnings Summary Generator",
   description="Upload a PDF of an earnings summary or transcript to generate a concise summary."
)
print("Launching Gradio interface")
iface.launch()